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Abstract: This document shows how reliability block diagrams can be simply
and efficiently assessed with AltaRica 3.0. No prior knowledge on AltaRica 3.0
is required. This document can thus be seen as a step by step introduction to
AltaRica 3.0 for those who have some basic knowledge of reliability engineering
modeling formalisms.
The presentation starts with the representation in AltaRica 3.0 of basic reli-
ability block diagrams with non-repairable components. Then, it shows how
they can be assessed using AltaRica 3.0 assessment tools.



Author(s) Antoine B. Rauzy
Reviewer(s) Tatiana Prosvirnova, André Leblond, Anthony Legendre
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1 Reliability Block Diagrams

1.1 Informal Presentation

It is often convenient to visualize the architecture of a system by means of diagrams made of
blocks and connections between these blocks.

The reliability block diagram formalism applies this idea to probabilistic risk assessment.
It is one of the fundamental formalisms in reliability engineering, see e.g. (Andrews and Moss
2002) for a reference textbook. A reliability block diagram describes thus a network of connected
blocks. A flow circulates in the network starting from a source node, propagating through blocks
and ending in a, usually unique, target node. Each block may have one or more failure modes
that prevent the flow to go from its input ports to its output ports. The system described by
the network is working if there is at least one operating path from one of the source nodes to
the target node.

Figure 1 shows a reliability block diagram. This model is made of one source node S, one
target node T, and eight blocks B1,. . . , B8.

Figure 1: A reliability block diagram

Possible S-T paths are S-B1-B2-B3-B7-B8-T, S-B1-B4-B5-B7-B8-T and S-B1-B4-B6-B8-T.
For now, we shall assume that each block Bi, 1 ≤ i ≤ 8, has only one failure mode simply

called failure and that failures of basic blocks are statistically independent. Moreover we
shall assume that the source and target nodes are perfectly reliable.

1.2 Formal Description

In order to model reliability block diagrams as stochastic discrete event systems, we have thus
to:

– Describe the possible states of basic blocks and how basic blocks change of state under the
occurrence of events (failures).

– Describe the propagation of the flow through the network.

– Associate probabilities or probability distributions to the failures of basic blocks.

According to our assumptions, basic blocks can be only in two states: WORKING or FAILED.
Initially they are in the state WORKING and change to state FAILED when the event failure
occurs. For the sake of the simplicity, we can assume moreover that their failures are exponen-
tially distributed. The failure rate may depend on the basic block.

Figure 2 shows a graphical representation of this behavior by means of a so-called finite state
automaton.

The automaton is made of two states (represented by ovals) and a transition from the state
WORKING to the state FAILED (represented by an arrow). The transition is labeled with the
event name, i.e. failure.
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Figure 2: The finite state automaton representing a basic block

Each of the basic blocks can be represented by such a finite state automaton. The global
behavior of the system can also be represented by a finite state automaton. This automaton is
the “product” of the automata representing basic blocks. The states of the product automaton
are vectors of states of basic blocks. In our example, these vectors involve thus eight values in
{WORKING,FAILED} as there are eight basic blocks. As failures of basic blocks are assumed to
be statistically independent, the probability that two of them occur exactly at the same time
is null. Therefore, transitions of the product automaton are just failures of basic blocks. They
change one component of the vector at a time. For instance, in the initial system state (assuming
states of basic blocks are given in lexicographic order):

〈WORKING,WORKING,WORKING,WORKING,WORKING,WORKING,WORKING,WORKING〉

The failure of the basic block B7 changes the system state to:

〈WORKING,WORKING,WORKING,WORKING,WORKING,WORKING,FAILED,WORKING〉

It would be indeed tedious and error prone to describe the product automaton by hand. In
our small example, as there are eight basic blocks, this automaton has actually 28 = 256 states
and 256× 4 = 1024 transitions (4 transitions per state on average). In a industrial size model,
with dozens if not hundred of blocks, the number of states is so large that enumerating them
is just impossible. Fortunately, as we shall see in the next section, AltaRica makes it possible
to describe implicitly these states, just by describing the behavior of each basic block and then
assembling these individual behaviors.

Regarding flow propagation, it is ruled by two types of equations: equations to describe how
the output flow of a basic block depends on its input flow and its internal state on the one hand,
equations to describe how basic blocks are connected on the other hand.

There is a flow going out a basic block, if there is a flow coming in and it is in the state
WORKING. We can thus write for each block Bi, 1 ≤ i ≤ 8, a Boolean equation of the following
form.

Bi.out = Bi.in and (Bi.state = WORKING)

Where Bi.in, Bi.out and Bi.state represent respectively the input flow, the output flow
and the state of the component Bi.

Connections between basic blocks can be described in similar way but involve only input and
output flows of the blocks. Table 1 gives these equations for our example.

2 AltaRica 3.0 Model

2.1 Model for Basic Blocks

We need first to encode a finite state automaton representing basic blocks. Figure 3 gives thus
the AltaRica 3.0 code for basic blocks.
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Table 1: Equations describing connections between basic blocks.

T = B8.out

B8.in = B6.out or B7.out

B7.in = B3.out or B5.out

B6.in = B4.out

B5.in = B4.out

B4.in = B1.out

B3.in = B2.out

B2.in = B1.out

B1.in = S

S = true

1 domain State {WORKING, FAILED}
2

3 class BasicBlock
4 State _state (init = WORKING);
5 Boolean in (reset = false);
6 Boolean out (reset = false);
7 event failure (delay = exponential(lambda));
8 parameter Real lambda = 1.0e-3;
9 transition

10 failure: _state==WORKING -> _state := FAILED;
11 assertion
12 out := in and _state==WORKING;
13 end

Figure 3: AltaRica 3.0 model for basic blocks

This listing starts with a declaration of domain (line 1). A domain is a set of symbolic
constants. Here the domain is named State and consists of two symbolic constants: WORKING
and FAILED.

Basic blocks are described by means of the class BasicBlock (lines 3–13). AltaRica 3.0 is
an object oriented modeling language. A class is a reusable modeling component.

The class BasicBlock declares first a variable named state (line 3). This variable takes
its value into the domain State declared above. The initial value of the variable state, in
this case WORKING, is declared via the attribute init. An attribute is a quantity with a name
associated with an element (variable, event. . . ). Attributes are declared after the name of the
element inside parentheses.

Then, the class BasicBlock declares two Boolean variables (i.e. variables taking their value
into the set {false,true}) in and out. The default values of these two variables, in this case
false, are declared via the attribute reset.

state is a state variable. The values of state variables can only change when a transition
is fired. in and out are flow variables. The values of flow variables depend on the values of
state variables. They are updated after each transition firing via the assertion (see below).

Identifiers of classes, variables and other named elements obey the same rule as in most of
programming and modeling languages: they must be a letter or an underscore character followed
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by any sequence of letters, digits and underscore characters. Upper and lower case letters are
considered as different. As a personal coding style, we use to distinguish syntactically state
variables and flow variables by prefixing the former by an underscore letter. This is indeed not
required by the grammar of AltaRica 3.0.

After the variables, the class BasicBlock declares the event failure (line 7) and asso-
ciates it with a negative exponential probability distribution by means of the attribute delay.
This distribution takes a parameter lambda (the failure rate).

Finally, the class BasicBlock declares the parameter lambda (line 8), which in this case
is real-valued, and gives it a default value, in this case (10−3). A parameter is an invariable
quantity associated with a class. Its value can be set up when the class is instantiated or just
kept to its default value.

After declarations of elements like variables, events and parameters, a class usually declares
one or more transitions and an assertion.

Declaration of transitions are preceded by the keyword transition. The class BasicBlock
declares only one transition (line 10). A transition is made of three elements:

– The event that labels the transition (in our example failure).

– The guard of the transition which is a Boolean condition over state and flow variables. The
transition is enabled in a given state, i.e. in a given valuation of state and flow variables,
if its guard is satisfied. In our example the transition is enabled when the variable state
has the value WORKING.

– The action of the transition which is made of one or more instructions that modify the
values of state variables. In our example, the action is made of only one instruction setting
the variable state to the value FAILED.

Regular transitions obey the syntax event:guard->action. Variable assignments have the
form variable:=expression;.

Finally, the class BasicBlock declares the assertion (line 12) which is preceded by the
keyword assertion. An assertion is made of one or more instructions that set up the values
of flow variables according to the values of state variables.

In our example, there is only one instruction, setting up the value of the flow variable out.
This value depends on the value of the state variable state but also on the value of the flow
variable in. If the class BasicBlock is considered in isolation, the flow variable in has no
value or more exactly its value is constantly equal to its default value false. The situation will
change when the class is instantiated and basic blocks connected by means of equations similar
to those of Table 1.

2.2 Model for the whole Diagram

To get a model for the reliability block diagram as a whole, we need:

– To instantiate the class BasicBlock as many times as there are basic blocks;

– To connect instances so to describe the network topology;

– To prepare the calculation of risk indicators.

Figure 4 shows the AltaRica 3.0 code for the network of components. Put together with the
code of Figure 3, it gives the complete model for our example.

The code given Figure 4 declares a block. A block is a prototype in the sense of object-oriented
theory (Abadi and Cardelli 1998), i.e. it is modeling component with a unique occurrence. The
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1 block Plant
2 Boolean S (reset = false);
3 Boolean T (reset = false);
4 BasicBlock B1(lambda = 1.0e-6);
5 BasicBlock B2(lambda = 1.0e-4);
6 BasicBlock B3(lambda = 1.0e-4);
7 BasicBlock B4(lambda = 1.0e-4);
8 BasicBlock B5(lambda = 1.0e-4);
9 BasicBlock B6(lambda = 1.0e-5);

10 BasicBlock B7(lambda = 1.0e-6);
11 BasicBlock B8(lambda = 1.0e-6);
12 assertion
13 T := B8.out;
14 B8.in := B6.out or B7.out;
15 B7.in := B3.out or B5.out;
16 B6.in := B4.out;
17 B5.in := B4.out;
18 B4.in := B1.out;
19 B3.in := B2.out;
20 B2.in := B1.out;
21 B1.in := S;
22 S := true;
23 observer Boolean failed = not T;
24 end

Figure 4: AltaRica 3.0 model for the reliability block diagram

model for the reliability block diagram as a whole could have been declared as a class as well, but
it is better to declare it as a prototype since it will not be reused. The structure of a prototype
is essentially the same as the one of a class. It starts with variables, events, parameters and
sub-components declarations. Then come transitions and the assertion. There are differences
between classes and prototypes, but this goes beyond the scope of this study.

In our example, the prototype is named Plant.
It starts by declaring two Boolean flow variables S and T to represent source and target

nodes of the network (lines 2 and 3). Then, the class BasicBlock is instantiated eight times,
one per basic block (lines 4–11). Each instance declares its own value of the failure rate lambda.

The prototype declares no event (and thus no transition) as failures of basic blocks are
statistically independent.

The assertion just implements the equations of Table 1 that connect together basic blocks.
Finally, the prototype declares the Boolean observer failed (line 23). An observer is

very much like a flow variable except that its value cannot be used in transitions or assertions.
Observers are used to declare quantities to be measured by assessment tools. In our example,
the only quantity we are interested in is the absence of flow in the target node T. But of course,
additional observers could be defined.

Appendix A gives some hints on how to author this model using AltaRica Wizard.

3 Assessment

The model designed in the previous section can be assessed by compiling it into Boolean equa-
tions (fault trees).
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3.1 Compilation into Boolean equations

The compiler to Boolean equations (fault trees) produces a model at Open-PSA format (Epstein
and Rauzy 2008) so that it can be assessed with the XFTA calculation engine (Rauzy 2020).
XFTA produces the minimal cutsets given in Table 2.

Table 2: Minimal cutsets calculated from the generated Boolean equations (fault tree).

B3.failure B4.failure
B2.failure B4.failure
B3.failure B5.failure B6.failure
B2.failure B5.failure B6.failure
B8.failure
B1.failure
B4.failure B7.failure
B6.failure B7.failure

Figure 5 shows the evolution of the unreliability of the system, as calculated by XFTA from
the generated Boolean equations (fault tree).

Figure 5: Unreliability calculated from the generated Boolean equations (fault tree).
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A Authoring Models with AltaRica 3.0 Workshop

AltaRica 3.0 Workshop is an integrated modeling environment dedicated to probabilistic risk
and safety analyses of complex technical systems. It supports two modeling languages: AltaRica
3.0 and S2ML+SBE. Both languages belong to the S2ML+X family.

AltaRica 3.0 Workshop contains:

– AltaRica Wizard, a graphical interface for authoring AltaRica 3.0 and S2ML + SBE
models.

– A complete set of assessment tools:

– An interactive simulator;

– A generator of stochastic Boolean equations;

– A stochastic simulator;

– A generator of critical sequences;

– A calculation engine for stochastic Boolean equations XFTA.

This section explains how to author models with AltaRica Wizard.

A.1 Projects

AltaRica Wizard manages models through projects. A project contains one or more files orga-
nized into folders. Files of a project can be AltaRica source files (having usually the extension
“.alt”), as well as other types of files generated by assessment tools.

Projects can be created, populated with folders and files, saved and (re)loaded from AltaRica
Wizard. They are described into XML files with the extension “.ar3w”. Project description
files can thus be edited manually, although this should be done with care.

Files and folders of a project are those of the underlying operating system. In particular, the
project itself is located into a folder of the underlying operating system, the project folder. All
paths to folders and files are considered relatively to the project folder and the file describing
the project is saved into this folder. This is the reason why it is highly recommended to organize
all of the files of a project under the project folder. In this way, the project can be moved from
one place to another one just by moving the project folder. The same principle applies indeed
to project copy: to duplicate a project it suffices to copy the folder that contains this project.

Folders are automatically added to and removed from projects when adding and removing
files. This means that a project contains a folder if and only if this folder contains a file of the
project (possibly located in a sub-folder, a sub-sub-folder, . . . of that folder). A contrario, sub-
folders of the project folder do not belong automatically to the project. Only those containing
a file of the project do.

Creating a new project, opening an existing one and saving the current project is done via
the menu “File”. Creating a new project implies selecting a folder for that project. By default,
AltaRica Wizard creates this folder for you. Nevertheless, it is possible to create a project
without creating a new folder.

A.2 Source Files

Once the project created AltaRica source files can be added to this project. AltaRica source
files must have the extension “.alt”.
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It is possible to create AltaRica source files directly via the menu “Project”. Another solution
consists in creating AltaRica source files by means of an external text editor and then to add
them to the project, also via the menu “Project”.

When tools are launched, all AltaRica source files of the project are gathered. The model is
thus made of all domains, blocks and classes declared in AltaRica source files.



The AltaRica step by step series

AltaRica 3.0 is an object-oriented modeling language dedicated to performance analyses of
complex technical systems. It makes it possible to design highly reusable stochastic discrete
event models. The AltaRica step by step series aims at showing how different types of systems
can be represented in AltaRica 3.0 and how their performance—to be taken in a broad sense—
can be assessed by means of AltaRica 3.0 assessment tools.

Each document of the series is a step by step introduction to AltaRica 3.0. We tried to
minimize the number of pre-requisites so that all engineers or students in engineering disciplines
can take benefit of these presentations.

Beyond being a simple collection of smooth introductions to AltaRica 3.0, the AltaRica
step by step series aims at gathering a versatile set of reusable modeling patterns. Using these
patterns makes the learning curve steeper and the modeling process more efficient.

AltaRica 3.0 results from two decades of active academic research and industrial experience.
It comes with AltaRica Wizard, an integrated modeling and simulation environment. AltaRica
Wizard is coupled with a complete set of assessment tools enabling a wide variety of analyses.
The specification of the language and the integrated modeling and simulation environment are
developed by the not for profit AltaRica Association. They can be used free of charge for research
and education purposes. The AltaRica project is supported by several academic institutions and
world leading industrial partners.
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