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Abstract 

This article is a contribution to the INCOSE initiative for model-based engineering transformation. Its 
material has been presented at the ALSEE tour event in Oslo in September 2016. The ideas developed 
here come from the practical and theoretical experience of the authors in both industrial and 
academic frameworks. We organize the discussion around six theses that aim at establishing robust 
conceptual foundations for the model-based engineering transformation. We focus on model-based 
systems engineering, model-based safety assessment and the relationship between these two 
disciplines. We report on active research initiatives that implement these six theses via the S2ML+X 
paradigm. We conclude with suggestions about future research and teaching activities. 
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1 Introduction 

Technical systems designed by industry are increasingly complex and interconnected. The processes 
by which they are designed, produced, operated, decommissioned and the respective organizations 
that implement these processes are also complex. To address this complexity, the different 
engineering disciplines (mechanics, thermic, electric and electronic, software, architecture…) 
digitalize their efforts, i.e. they produce models. We can describe this transition as entering the era 
of Model-Based Systems Engineering [Haskins 2011]. Model-based systems engineering uses models 
to facilitate the communication and thinking activities of systems engineers. Models offer 
visualizations that augment the understanding of the problem domain beyond the textual 
statements of requirements, functions, performance, and verification. When properly used they 
assist the systems engineer in creating a consistent view of the problem and their work toward 
achieving a satisfactory solution [Long and Scott 2011]. The implication of this paradigm is that the 
design of each system involves dozens of models, all at the same time [Blanchard 2008, Walden 
2015]. In addition, many of these models are embedded into the systems and used for their 
operation [Derakhshanmanesh 2014]. Paradoxically, most engineers perform modelling without any 
training in the theory of models. However, models must be taken seriously, and considered as first 
class citizens. The emerging science of complex systems is the science of models. This presents a 
number of challenges: 

• Better understand the nature of models and their roles in industrial processes;  

• Develop the “Art of Modeling” in each engineering discipline; 

• Manage models throughout the lifecycle of systems; 

• Design tools and methods to support the integration of engineering disciplines/processes 
through the alignment of models they produce; and, 

• Teach modeling, clarify its value proposition its role to (future) engineers and systems 
designers. 

Meeting these challenges is not possible without solid conceptual foundations. We present here six 
theses to organize this discussion about these foundations, with a focus on two engineering 



disciplines: system architecture and safety analysis. These theses should be considered in the 
philosophical sense, i.e. they are short sentences that summarize our vision and that are supported 
by an organized set of hypotheses, arguments and conclusions. 

We use the term “system architecture” to designate processes by which 1) missions, functions and 
the organization of the system are specified and justified, and 2) the different engineering disciplines 
contributing to the design of the system are integrated. This broad definition covers many activities. 
Alternative terms “system design” and “systems engineering” are sometimes used. One of the 
outcomes of system architecture process is a description of the architecture of the system. This 
architecture as well as the system architecture process may be organized according to architectural 
frameworks, such as DoDAF, ToGAF and other. In the sequel, model-based systems engineering 
refers to the model-based approach in system architecture. Model-based systems engineering is in 
some sense defined in opposition to the document-centric approach, although both approaches may 
involve documents and models. The definition is thus more a matter of degree than a radical 
separation.  

We use the term “safety analyses” to cover all assessments of the performance of the system 
considering the uncertainties and random events (e.g. failures) the system will experience while in 
operation. This includes risk analyses, reliability analyses, maintainability analyses, and safety 
analyses. Safety analyses relies in essence on models. In the sequel, model-based safety assessment 
(or analyses) refers to safety analyses relying on high modeling languages as opposed to more 
traditional approaches relying on low level modeling formalisms such as fault trees or reliability block 
diagrams. Here again the definition is more a matter of degree than a radical separation. 

System architecture and safety analysis are essential in system design and operation. They both 
consider systems at the same level of abstraction: system architecture aims at specifying how the 
system should work, while safety analyses aim at assessing the likelihood that something goes 
wrong, and the possible consequences of such an event. As of today, system architecture models use 
modeling formalisms such as SysML [Friedenthal 2011], while safety models are designed typically 
with formalisms such as fault trees, block diagrams, event trees, Markov chains or stochastic Petri 
nets (see e.g. [Kumamoto 1996, Rausand 2004] for reference textbooks). 

The remainder of this article is organized as follows. Section 2 presents our six theses. Section 3 
reports on active research initiatives that implement these six theses via the S2ML+X paradigm. 
Section 4 discusses the implications in terms of teaching of the above developments. Finally, Section 
5 concludes the article. 

2 Conceptual foundations for model-based engineering 

Modeling is a simplex operation in the sense of Berthoz [Berthoz 2012], i.e. it reduces the complexity 
without removing it totally. It is a way to tame the complexity, not a magic wand to make it vanish. 
Models are thus complex and consequently need to be structured, documented, managed… This 
suggests that we need an engineering of models and raises a series of questions: 

− How to structure models? 

− What is a good modeling language? 

− What is a good palette of modeling languages? 

− How to manage versions and configurations of models through the lifecycle of systems? 

To answer these questions, we need to consider models both for what they are, which requires 
studying modeling languages, and what they are used for, which requires studying assessment tools.  
 
Each complex technical system designed by industry results in hundreds if not thousands of models. 
These models are used not only to design the system, but also to operate and even to decommission 
it. Designing, communicating and maintaining these models has a high cost. Therefore, it is of 



primary importance to understand (and to challenge) their respective roles and benefits. This leads 
us directly to our first thesis. 

2.1 Thesis 1 - The diversity of models is irreducible 

Models are working tools, not (platonic) ideals: a model is an abstraction of the entity it describes 
and is useful only because it is an abstraction. The content and the level of abstraction of a model 
depends on what is to be observed, i.e. on the (virtual) experiments to be performed on that model. 
The meaning and practical consequences of this observation must be examined with care. 

First, this implies that it is not possible to design all of the models of a complex technical system 
within a unified framework. Each model presents a specific view on the system. The different views 
reflect dissimilar needs. Each engineering discipline has (and needs to have) its own modeling 
methodologies, formalisms and tools, dedicated for the specific purposes of that discipline. In that 
respect, models designed for system architecture, are not different from models designed in other 
engineering disciplines. They reflect the vision of the system architects and designers and are 
dedicated to this very purpose. 

Consequently, models are not compositional: the set of models of a system is not a model.  

There cannot be such a thing as a unique model or even a master model of a complex system. We 
must accept reality and live with heterogeneous models. Ensuring that these models are related to 
the same system cannot be decided a priori, on the first try. Rather than to presume multiple 
modelers are using the same ontology, we must presume a cacophony of models then work to unify 
and harmonize them. The results reflect necessarily an organizational process, with all the inherent 
consequences this entails in terms of mutual understanding of individuals and groups having 
different cultures, of power relationships and diverging interests within and between organizations 
and so on. 

This also applies to the relationships between system architects and safety analysts. Although both 
consider systems at the same level of abstraction, their visions and purposes are different and must 
remain so. Improving the way the two disciplines co-exist and co-influence each other is of great 
interest, but attempts to merge their activities and their models are dangerous “dreams”. 

One of the main reasons for these difference stands in our second thesis. 

2.2 Thesis 2 - There is an epistemic gap between pragmatic and formal models 

Models are created at different levels of abstraction, for different purposes and in different modeling 
formalisms. There are two fundamental categories of models: pragmatic models that aim primarily at 
supporting the communication amongst stakeholders (see e.g. [Weilkiens 2015]) and formal models 
that aim primarily at calculating something, typically indicators. Formal models are used also for 
simulations or to generate artifacts such as computer code, or even physical objects (3D printing, 
additive manufacturing…). 

Pragmatic models, when written in standardized graphical notations such as BMPN [White 2008], 
SysML [Friedenthal 2011] or OPM [Dori 2016], are sometimes called semi-formal. As their purpose is 
to facilitate communication, they keep implicit a lot of knowledge and take a broad outlook on the 
system under study. Formal models on the other hand essentially encode and organize (a given type 
of) mathematical equations. These models, typically designed in modeling languages such as 
Modelica [Modelica 2014], Lustre [Halbwachs 1991] or AltaRica [Prosvirnova 2013], make every 
detail explicit. They focus on some specific feature of the system under study. Obfuscation is a good 
test to separate the two categories of models. Take a pragmatic model and rename its elements with 
abstract names such as X, Y, Z. The model loses its meaning and interest because to understand and 
use it, you have to refer to the system under study. The virtual experiments performed on this type 
of model are primarily communications (brainstorming, negotiations…) that assume that the 



stakeholders share a common knowledge about the described entity (in particular, names of its 
components). Now take a formal model and obfuscate it in the same way: nothing changes. The 
calculations performed on the model produce exactly the same results. It is even fully possible to 
delegate these virtual experiments to a third party (human or computer) that has strictly no idea of 
the described entity. Formal models have a semantics, i.e. they are interpreted as mathematical 
objects as opposed to pragmatics, i.e. an interpretation in the ``real’’, ``physical’’ world. Note that 
the distinction between semantics and pragmatics has important consequences in linguistics; see e.g. 
[Cruse 2011]. 

This epistemic gap between pragmatic and formal models must be examined with care, as it has 
important consequences for systems engineering processes. 

First, pragmatic models and formals models have radically different natures and purposes. Both 
types of models are indeed useful, which means that systems engineering processes should rely on 
both. 

Second, passing from pragmatic models to formal ones requires an engineering process. This process 
cannot be fully automated because it requires making explicit the heretofore-implicit knowledge. 
Attempts to “decorate” pragmatic models with formal information in the hope of generating formal 
models yields disappointing results: the source models are blurred and overloaded, losing their 
ability to support a seamless communication, while the generated formal models are incomplete and 
uselessly complex. This is the reason why attempts to generate safety models (which are formal) 
from system architecture models (which are pragmatic) have never been successful (this issue will be 
further discussed later in this paper). Therefore, the central question is not to generate one type of 
model to the exclusion of others, but to ensure a seamless coexistence of both types of models. 

Third, as pragmatic models are computerized (thanks to the above-mentioned standardized 
notations), we can design tools to process them. These tools may perform consistency checks and 
other types of verification. They can also “execute” models, i.e. perform simulations, but this 
requires formalizing notations so to give them an executable semantics. It is also possible to trace 
impacts of changes in requirements on state machines describing the lifecycle of the system or on 
diagrams representing its functional architecture, see e.g. [Lebeaupin 2017]. In any case, these 
processing tools should be designed from a syntactic point of view as opposed to a semantic point of 
view, i.e. by considering models as structures in which it is possible to navigate and on which some 
structural operations can be performed, but without interpreting these structures (i.e., without 
assigning them any meaning). Note that the idea of considering objects under study from a purely 
syntactic point of view is hardly new: its power of has been demonstrated for instance in linguistics, 
indeed by Chomsky [Chomsky 1957] and in mathematical logic, via for instance Herbrand’s 
interpretation of first order logic, see e.g. [Ebbinghaus 1996]. 

As we shall see, the syntactic point of view is also helpful to align heterogeneous models starting 
with our third thesis. 

2.3 Thesis 3 - Behaviors + Structures = Models 

Some readers may recognize that this thesis echoes the title of the famous book by Niklaus Wirth 
“Data structures + algorithms = programs” [Wirth 1976]. The modeling activity needs to be 
supported by concepts, methods and tools. Two important remarks are necessary at this point. First, 
to design a model, especially a formal model, we need a modeling language (would it be purely 
graphical), just as to design a program, we need a programming language. Second, models aim at 
simplifying in some way the complexity of systems. However, if the system under study is complex, 
the models of this system cannot be “just” simple because this simplification would lose too much 
information about the system.  

We can make several observations here. 



First, any formal modeling language is the combination of a mathematical framework to describe the 
behavior of the system under study and a structuring paradigm to organize the model. Pragmatic 
models generally are not based on a mathematical framework, even if they do support some 
simulation capability [Yaroker 2013]. Examples of underlying mathematical frameworks in formal 
models include for instance ordinary differential equations in Simulink and Modelica; Mealy 
machines in Lustre; guarded transitions systems in AltaRica and so on.  

Second, the choice of the appropriate mathematical framework for a model depends on which 
aspect of the system we want to study, i.e. eventually what kind of virtual experiment we want to 
perform on the model, e.g. multi-physic simulation with Modelica, generation of embedded 
controllers with Lustre or probabilistic safety analyses with AltaRica. 

Third, structuring paradigms are independent to a very large extent of the chosen mathematical 
framework. They can be studied on their own and applied to all mathematical frameworks. 
Structuring paradigms for modeling languages are derived from those of programming languages 
where object-orientation is dominant, if not hegemonic, in industrial practice (for reference 
monographs that strongly influenced, directly or indirectly, the design of most of modeling languages 
see e.g. [Meyer 1988, Abadi 1998, Rumbaugh 2005]). 

For modeling languages, prototype-orientation seems particularly well suited. Prototype-orientation 
is a kind of object-orientation in which an object can be defined either via the class/instance 
mechanism (as in object-orientation) or directly via the notion of prototype [Noble 1999]. Ideas 
behind prototype-orientation stem from important works in cognitive science (see e.g. [Lakoff 
1990]). They also echo works on how the knowledge is created (e.g. Hatchuel’s CK-theory [Hatchuel 
2009]). To summarize, prototypes are used when the system is analyzed with a top-down approach, 
i.e. the knowledge about the system is not stabilized yet, while the class/instance mechanism is used 
with a bottom-up model construction, i.e. when the knowledge about the system is sufficiently 
mature to develop extensive libraries of on-the-shelf modeling components. Reuse is also possible in 
the prototype/top down approach, but it is reuse of modeling patterns rather than reuse of modeling 
components (just as design patterns in software engineering [Gamma 1994] are different from 
libraries of reusable classes like the Qt, see e.g. [Lazar 2016]). In that respect, the system architecture 
and safety analysis processes are similar: they are essentially top-down approaches, relying on 
modeling patterns. 

It is interesting to note that, from a historical perspective, the first object-oriented language, Simula 
[Kirkerud 1989], was actually a modeling language more than a programming language and that the 
first language that popularized object-orientation, Smalltalk [Goldberg 1983], which was strongly 
inspired by Simula, considers actually classes as modifiable objects, i.e. is very close to the prototype-
orientation paradigm. 

Object- and prototype-orientated constructs are also of great interest to represent structures 
without behavior, or more exactly structures without a formal semantics, and to perform operations 
on these structures (as suggested above). This is the reason why they should be used extensively to 
describe systems architectures. Hence our fourth thesis: 

2.4 Thesis 4 – One should not confuse models with their graphical representations  

At first, this thesis may seem at best extremely provocative, as most of the models in both system 
architecture and safety analyses (as well as in other engineering disciplines) are authored via 
graphical modeling environments and many practitioners just refuse to write a single line of code. 
However, graphical modeling is mainly useful to describe structural parts of models and systems (for 
an interesting discussion of graphical modeling see e.g. [Fuhrmann 2011]). It is hard to conceive how 
to author a differential equation or the probability distribution of the basic event of a fault tree 
graphically.  Behavioral descriptions, such as Markov chains or Petri nets, can be represented 
graphically. However, as soon as models become large, which is the case for nearly any industrial-



scale system, their graphical representations become more problematic than useful: as they cannot 
fit into any reasonable space (computer screen or printed out paper), the analyst must visualize them 
by parts. This means that s/he must develop a global cognitive model to understand local graphical 
representations.  

Moreover, it is often hard and counterproductive to split the model into parts a priori. This remark 
applies to models in general: 1) many details of models are better described by code (text) than 
graphics and 2) as they enlarge, it is not possible to present them in one visualization. In other words, 
models exist independently of their graphical representations. These graphical representations, even 
taken together, cannot fully describe the model, except in the most simplistic cases. Thus, it is often 
very convenient to have several partial graphical representations for the same information and to 
extract dynamically graphical representations according to one’s needs.  

Here again, the parallel with software engineering is fruitful. It is useful to represent the architecture 
of software by diagrams such those of UML [Rumbaugh 2005]. However, the software exists 
independently of these representations and the code is the ultimate reference. Moreover, below a 
certain level of abstraction, the code gives a more compact, more precise, in a word more useful, 
information than any drawing. At the end of the day, humans invented writing to overcome the lack 
of precision of drawing. 

Neither systems architecture models nor safety analyses models are purely structural. They 
represent also systems behavior. Because they consider systems at the same level of abstraction, 
they tend to use the same type of behavioral description. This remark is formalized by our fifth 
thesis.  

2.5 Thesis 5 - Discrete event systems are the (only) suitable mathematical framework to describe 
behaviors at a system level 

We use here the term discrete event systems loosely. By discrete event systems we mean 
representations that assume that at any point of time the system is in a certain state and that it 
changes state when, and only when, a significant event occurs. This type of model is thus very 
different from differential equations that represent continuous changes of states. 

Safety models are event-driven and probabilistic in essence. Probabilistic events are at the very core 
of (static and dynamic) fault trees, event trees, reliability blocks diagrams, Markov chains, stochastic 
Petri nets, AltaRica and all other modeling formalisms used in this domain. 

Discrete events play also a significant role in modeling systems architectures, for instance the clocked 
transitions systems of OPM, and the UML and SysML state machine diagrams and sequence diagrams 
(inspired from message sequence charts of SDL). 

However, these various mathematical frameworks are not equivalent. There are already subtle 
differences between Harel’s Statecharts [Harel 1987] and UML and SysML state machine diagrams, 
see e.g. [Eshuis 2009] for a discussion. In the same vein, UML and SysML sequence diagrams and 
message sequence charts are slightly different, see e.g. [Harel 2003]. Computer science produced an 
incredible variety of formalisms to describe state machines, as well as process algebras (see e.g. 
[Milner 1989] for a classical textbook) that may also be a good candidate to represent certain aspects 
of systems’ behaviors, see e.g. [Issad 2016] for recent developments. 

It remains that representing systems behavior by discrete states that change under the occurrence of 
events is probably the right level of abstraction needed by both system architecture and safety 
analysis and more generally by any description considering systems at the same level. The future 
development of models engineering will tell us whether it is possible to get a more unified view of 
state machines. At least some well defined correspondences between the various formalisms should 
be established. Alignment of heterogeneous models is precisely the subject of our sixth and last 
thesis. 



2.6 Thesis 6 - Abstraction + Comparison = Synchronization 

As stated, the design, production, operation and decommissioning of a system involves the creation, 
maintenance and alignment of dozens, if not hundreds, of models. These models are designed by 
different teams in different languages at different levels of abstraction, for different purposes. 
Models mature also at different rates. The question is how to ensure that they describe the same 
system, i.e. how to synchronize them. 

There are at least four distinct aspects in this question: a first one concerns the management of 
models in the context of the extended enterprise. This is the realm of collaborative data bases, 
product life cycle and product data management environments, see [Stark  2011].  The concept of 
“digital twin” is gaining popularity to designate systems in charge of models (and engineering data) 
management. A second aspect is related to the seamless cooperation of models of different 
abstraction levels. This is an important and difficult topic, see e.g. [Mainini 2012] for an interesting 
discussion. A third aspect regards the co-simulation of heterogeneous but compatible models, such 
as experiments from the Ptolemy project [Ptolemaeus 2014]. Our thesis is related to a fourth aspect, 
namely the alignment of heterogeneous models representing the system at about the same level of 
abstraction. A paradigmatic example of such alignment is indeed the alignment of system 
architecture models and safety models. This alignment is an industrial necessity and is required by 
Safety Standard such as IEC 61508 [IEC61508] and IEC 61511 [IEC61511]. 

The heterogeneity of these models makes it impossible to compare them directly. To compare them, 
we first have to abstract them into a common language, and then perform a comparison of their 
abstractions (see Figure 1). Once the comparison has been made, it is possible to go back to original 
models via a concretization mechanism. This principle is close to Cousot’s abstract interpretation of 
programs [Cousot 1977]. As the behavioral part of models is purpose-dependent, the main way to 
compare models is to compare their structure. The structure of models reflects the structure of the 
system, though to a limited extent. 

The abstraction, comparison, and concretization mechanisms can depend on the type and maturity 
of models. In the preliminary phase of a project, it may consist simply in comparing dictionaries (the 
names of components in each model). Later, more elaborate synchronization schemes can be put in 
place. Libraries of abstractors, comparators and “concretizators” could be defined. These ideas have 
been recently applied by Legendre on a realistic proof-of-concept (the design of the fire detection 
system of a military helicopter) [Legendre 2016]. To conclude this thesis, note that the objective of 
the whole synchronization process is not to align models fully. Rather, it is to identify areas of 
disagreements.  

3 The S2ML + X paradigm 

This section aims at presenting and discussing on-going research and development projects we are 
involved in that attempt to put into practice the six theses developed in the previous section. The 
guideline of these projects could be stated as the study from both a theoretical and a practical point 
of view of the S2ML+X paradigm.  

3.1 System Structure Modeling Language (S2ML) 

To study the interest of prototype-orientation in the context of modeling languages, the first author 
and his colleagues recently developed System Structure Modeling Language (S2ML), a small 
theoretical modeling language containing only structuring mechanisms [Batteux 2015]. S2ML gathers 
and organizes in a systematic way structuring constructs stemmed from both the object-oriented and 
the prototype-oriented programming. S2ML confirms that most of the structural relationships 
between the components/functions of a system are captured by four types of relationships: “is-part-
of” (composition), “is-a” (inheritance), “uses” (aggregation) and “connect” (connection). Composition 
is the basic tool to decompose systems into subsystems (both from a functional and physical 



standpoint). The system composes its subsystems, which in turn may compose sub-sub-systems and 
so on. Inheritance is the basic tool to describe abstraction: a car is a (inherits from) vehicle, meaning 
that it has all of the features of a vehicle, possibly specialized, plus some additional ones. In many 
situation, although a component or a function A requires another component or function B to 
perform its mission, B is not part of A. Rather, A uses B. Aggregation is the basic tool to describe such 
situations. Finally, connections are used the basic tool to describe how from of matters, energy or 
information circulate through the network of components or functions of a system. These abstract 
relationships are at the very core of systems architecture and models structure. Some additional 
mechanisms are also very important, such as the class/object (instance of class) mechanism as well 
as various notions of polymorphism.  

Eventually, S2ML can be seen in two ways. 

First, as a domain specific modeling language on its own, dedicated to architecture description, or 
more exactly to functional and physical decompositions of systems. The importance of domain 
specific languages for engineering is now well established, see e.g. [Fowler 2010, Selic 2007]. With 
respect to this first vision, S2ML clarifies and generalizes constructs found in other formalisms 
dedicated to structural descriptions, including for instance the structural diagrams of SysML. 

Second and more importantly, as a complete and versatile set structuring paradigm that can be 
applied to any mathematical framework, as illustrated in Figure 2. With that respect, S2ML illustrates 
our third thesis, structure + behavior = model. 

The richness of S2ML (even if no behavior is attached to its elements) makes it possible to develop 
quite complex models efficiently. This is the reason why a reference textual grammar has been 
developed for S2ML, and standardized graphical representations (close to those of SysML) are 
proposed to capture various aspects of models, illustrating in this way our fourth thesis. 

We have also used S2ML in the context of three recent PhD theses. The first one was on reverse 
engineering of textual specifications using a scenario-based approach [Issad 2016]. S2ML was used 
there both to describe the system architecture (this model has been co-designed with the scenarios) 
and as a mean to structure scenarios. The second PhD thesis was on the agile development of 
corpuses of requirements [Lebeaupin 2017]. The idea was to apply on requirements the syntactic 
approach discussed Section 2.2 and to elicit them while designing S2ML models of the system 
architecture (and of course to link the syntactic structures of requirements with these models). Both 
PhD research efforts were supported by partnerships with industry (with Siemens for the first one 
and SAFRAN for the second one) and are illustrations of our first four theses. The third PhD thesis 
was on the use of the model synchronization approach on the previously mentioned example of a 
fire detection system of a military helicopter [Legendre 2016] and was therefore a proof-of-concepts 
for our sixth thesis. S2ML was used in this case as a pivot language between system architecture 
models (designed with SysML) and safety models and was conducted in a partnership with CEA List 
and DGA (the French Directorate General of Armaments). 

The most advanced implementation of the S2ML + X paradigm is the design of the object-oriented 
modeling language AltaRica, which we shall describe here. But, before presenting AltaRica, we need 
to introduce the whys and wherefores of the so-called model-based safety assessment, as 
implemented by this modeling language. 

3.2 The promise of the model-based approach in reliability engineering 

The most widely used modeling formalisms for safety analyses lack either expressiveness, e.g., fault 
trees and event trees, or structure, e.g., Markov chains and stochastic Petri nets. Consequently, they 
are far from system specifications. These deficiencies make the models hard to design, hard to share 
with stakeholders, and even more importantly, hard to maintain through the entire lifecycle of 
systems. 



Modeling systems in a more structured way and with suitable mathematical frameworks can reduce 
the distance between systems specifications and models, without increasing the complexity of 
calculations. This is the promise of the so-called model-based safety assessment. This approach 
provides the ability to animate/simulate models, to ease their validation, and to share them with 
stakeholders. Moreover, this presents the following important benefits for safety analyses stricto 
sensu: 

− Such a model can address several safety goals, which eases versioning, configuration and 
change management; 

− It can be assessed by several assessment tools, which increases versatility of assessments 
and quality-assurance of results (but with a cost); 

− It allows fine grain analyses, which limits over-pessimism resulting from coarse grain analyses 
as performed for instance with fault trees. 

− Its maintenance is alleviated significantly, as it is closer to systems specifications. 

− The same formalism can be used to model simple static models as well as dynamic models, 
hence facilitating the acquisition of competences and the deployment of tools. 

− The graphical animation of models makes it possible to share them with non-specialists. 

− The same technology can be used not only for safety analyses but more generally to assess 
performance of systems (in terms of costs, delays, production levels…) subject to 
uncertainties. 

There is of course an initial cost to pay for these benefits, but the return of investments is quickly 
positive. The idea of the AltaRica project is thus to use S2ML as a set of structuring constructs and a 
suitable mathematical framework for the description of behaviors. 

3.3 The AltaRica 3.0 Project 

As discussed above, the goal is to find an appropriate mathematical framework to perform safety 
analyses. Our fifth thesis asserts that stochastic discrete event systems provide such a framework. 
The first author proposed the generic notion of stochastic guarded transitions systems (GTS) for that 
purpose [Rauzy 2008]. GTS generalize, without sacrificing algorithmic rigor, all states/events 
formalisms used for safety analyses, including Markov chains and advanced implementation 
stochastic Petri nets (see e.g. [Signoret 2009]). Compared to state machines such as Statecharts, GTS 
are fully compositional. This is the reason why they should be preferred for safety analyses (it is 
anyway possible to translate any Statechart model into a GTS automatically).  

The combination of GTS and S2ML is implemented into the modeling language AltaRica 3.0 
[Prosvirnova 2013]. An integrated modeling environment for the third version of the language is 
currently under development as join effort of the Open-AltaRica team at IRT-SystemX (Paris, France) 
and the RAMS group at NTNU. Industrial partners (Airbus, Safran and Thalès) support this project, 
which aims to benefit from about fifteen years of successful industrial and academic experience 
using the two previous versions of the language. Assessment tools under development include tools 
that work directly on AltaRica models (such as a stochastic simulator) as well as compilers for lower 
level formalisms (such as fault trees and Markov chains). Figure 3 presents a snapshot of the AltaRica 
3.0 project. 

AltaRica 3.0 is significantly more powerful than the previous versions of the language. First, guarded 
transitions systems make it possible a larger category of systems than it was possible to deal with 
with the previous versions (notably looped systems) [Batteux 2017]. Second, structuring constructs 
stemmed from S2ML make much easier the design and the re-use of modeling patterns, which makes 
in turn the models easier to design, to debug, to communicate and to maintain [Batteux 2018]. 
Although AltaRica potentially represents the future of reliability engineering and system safety, it 
does not solve all of the problems of this domain. The assessment of safety models is actually 
provably hard. Some important questions, such as the equivalence of two discrete event systems, are 



undecidable, see [Esperza 1998]. The calculation of probabilistic indicators is extremely resource 
consuming. This is not a problem of technology. It has been mathematically proven that they are 
computationally intractable (technically, the underlying problem is #P-hard as shown by Valiant) 
[Valiant 1979]. See also [Papadimitriou 1994] for a reference book on computational complexity. 
Practical assessment tools perform unwarranted approximations that may impact the significance of 
the results. Safety models always result in a tradeoff between the accuracy of the description and the 
ability to perform calculations. Finding a suitable compromise for a given system depends upon the 
expertise of the safety analyst. This is another reason why no simple translation scheme can be 
defined from system architecture models to safety models. 

4 Discussion - Teaching Models Engineering 

New concepts, techniques, and tools are introduced in industry often thanks to the injection of new 
generations of engineers trained to use these concepts, techniques, and tools at University. It is 
therefore of primary importance to train new generations of engineers to Model-Based Systems 
Engineering. However, current curricula are facing the following constraints: 

1. Complex systems do not fit neatly in the time span of a typical academic semester, although 
some interesting experiments have been reported, e.g. [Haskins 2013]; 

2. Acquiring and maintaining sophisticated model-based engineering tools is out of the reach of 
most University budgets.  

3. The design of new courses based on an emerging discipline takes place in the context of a 
historical revolution: a situation where the professor is not the only, nor even the main, 
knowledge holder. 

The second author has applied systems engineering in a project-based course where there has been 
limited success introducing simple models. But, most often, once the scale of the models outgrows 
what can be easily visualized (e.g., a piece of A3 paper), the models stop growing or being used. 
Nevertheless, the collaborative approach this course promotes is extremely appreciated by students 
and is a key enabler to raise their interest for our discipline. 

The first author introduced a few years ago a course on model-based systems engineering, first at 
Centrale Paris (Paris, France) for third year students (500 students) then at NTNU for master students 
(20 students), and at CentralePékin (Beijing, China) also at master level (50 students). He also has a 
solid experience in teaching model-based safety assessment. Here follow some remarks and lessons 
learned. 

Modeling has much to do with programming. Models, as programs, are artefacts, sequences of 
symbols obeying a certain syntax (grammar) and having a certain semantics. Therefore, the science 
and engineering of models is tightly intertwined with computer science. In that respect, computer 
science can be viewed from three levels: 

− As the study of discrete structures (graph, automata, languages…) which is at the core of the 
science of models, which means that a course on model-based systems engineering must 
allow adequate room for these concepts; 

− As an engineering discipline (software engineering), which is quite far from models 
engineering;  

− As a toolbox for the engineer (typically via scripting languages such as Matlab or Python), i.e. 
a nowadays essential productivity tool, especially for models engineering. 

It is too early to draw definitive conclusions, but it is clearly difficult to teach model-based systems 
engineering to students who have no background in computer science or discrete mathematics. On 
the contrary, students with such background acquire quickly and relatively easily the concepts and 
methods of the discipline. The whole course is now evolving into an advanced introduction to 
discrete mathematics applied to model-based systems engineering. It relies for a part on the S2ML+X 



paradigm as students are asked to design models in various small domain specific languages relying 
on this paradigm. 

5 Concluding Remarks 

As we enter the era of Model-Based Systems Engineering models must be considered as first class 
citizens and taken as the object of in-depth scientific studies. There will be no good model-based 
engineering without developing the science of models. Reciprocally, the science of models should be 
embodied in practice, by developing modeling concepts, languages, techniques and tools. Much 
remains to be done, although very significant progresses have been made in the recent years. 

We are now facing a number of challenging issues to deal with new generations of systems as these 
systems are: 

− Opaque: their states can be observed only by indirect means; 

− Reflective: they embody models of their own behavior and environment; 

− Deformable: their architecture changes throughout their mission. 

We have to forge the concepts to face these challenges. We have to teach these concepts to new 
generations of scientists and engineers. A vast, exciting and inspiring program awaits. 
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Figure 1. The model synchronization process 

 

 

 

 

Figure 2. S2ML as a structuring paradigm for modeling languages 

 



 

 

Figure 3. A snapshot of the AltaRica 3.0 project 

 
 


