
Norwegian University of Science and Technology

Andrey
A pedagogical implementation of Markov chains

Antoine Rauzy
Department of Mechanical and Industrial Engineering
S. P. Andersens veg 5, Valgrinda*3.306
Antoine.Rauzy@ntnu.no



Norwegian University of Science and Technology

Licenses & versions

2

The present document is distributed under Creative Common 
License CC-BY-ND.

Andrey is free software distributed by the AltaRica Association under GNU 
GPLv3 license.

Version 1.0.0

Date 23/02/2019



Norwegian University of Science and Technology 3

Andrey Andreyevich Markov was a Russian 
mathematician best known for his work on stochastic 
processes.
A primary subject of his research later became known as 
Markov chains and Markov processes

Andrey Andreyevich Markov
1856 - 1922

Source Wikipedia



Norwegian University of Science and Technology 4

Andrey Nikolaevich Kolmogorov was a 20th-century Soviet 
mathematician who made significant contributions to the 
mathematics of probability theory, topology, intuitionistic logic, 
turbulence, classical mechanics, algorithmic information theory 
and computational complexity.

Andrey Nikolaevich Kolmogorov
1903 - 1987

Source Wikipedia

In 1933, Kolmogorov published his book, Foundations of the Theory 
of Probability, laying the modern axiomatic foundations of 
probability theory and establishing his reputation as the world's 
leading expert in this field. In his study of stochastic processes, 
especially Markov processes, Kolmogorov and the British 
mathematician Sydney Chapman independently developed the 
pivotal set of equations in the field, which have been given the 
name of the Chapman–Kolmogorov equations.

Later, Kolmogorov focused his research on turbulence, where his publications (beginning in 1941) 
significantly influenced the field. In classical mechanics, he is best known for the Kolmogorov–Arnold–
Moser theorem, first presented in 1954 at the International Congress of Mathematicians. In 1957, 
working jointly with his student Vladimir Arnold, he solved a particular interpretation of Hilbert's 
thirteenth problem. Around this time he also began to develop, and was considered a founder of, 
algorithmic complexity theory – often referred to as Kolmogorov complexity theory.



Norwegian University of Science and Technology

Table of contents

• Introduction

• Getting Started

• The S2ML+MRK modeling language

– Basic components

– Structuring constructs

• Commands

• References

Appendix

• Grammar of S2ML+MKRT models

• Grammar of Andrey commands

• Known bugs

5



Norwegian University of Science and Technology

INTRODUCTION

6



Norwegian University of Science and Technology

Rational

Markov chains are one of the fundamental stochastic models. They are used, 
implicitly, explicitly or as a reference in virtually all branches of science and 
engineering.

Andrey is a pedagogical implementation of discrete-time and continuous-time Markov 
chains with rewards:

• Models are written in the S2ML+MRK domain specific modeling language, which 
is the combination of S2ML (S2ML stands for system structure modeling language), 
a set of object-oriented constructs to structure models and Markov chains with 
rewards.

• It implements numerical solutions of Markov chains, in particular the matrix 
exponentiation algorithm.

• It comes as a command interpreter, making it possible to perform various studies.

This presentation specifies S2ML+MRK and presents the algorithms implemented by 
the tool as well as the commands to apply them.

Andrey is developed in Python, for pedagogical purposes only. It is by orders of 
magnitude less efficient than available commercial tools.

The objective is to familiarize students with Markov chains as a modeling language.

7



Norwegian University of Science and Technology

Installing and Running Andrey

To install Andrey you just need to decompress the archive "Andrey1.0.0.zip" into local 
directory. Source files are the Python file "Andrey.py" as well as the directory "src" and 
its content.

To run Andrey you have to open the file  Python file "Andrey.py" into your Python 
environment, set up the name of script file and run it.

8



Norwegian University of Science and Technology

Organization of this document

The remainder of this document is organized as follows.

• Section Getting started is a small introduction to Andrey.

The two next sections describe S2ML+MRK:

• Section Basic components presents the core of the language.

• Section Structuring constructs presents object-oriented constructs to structure models.

The next section describe the command interpreter:

• Section Commands describes Andrey commands.

Finally, the appendix completes this document.

• Appendix S2ML+MRK gives the Backus-Naur form of the modeling language.

• Appendix Andrey gives the Backus-Naur form of Andrey commands.

• Appendix Known bugs reports know problems with the current version of Andrey.

9



Norwegian University of Science and Technology

GETTING STARTED

10



Norwegian University of Science and Technology

S2ML+MRK: discrete-time Markov chains

11

S2ML+MRK is a textual format to describe (hierarchical) Markov chains.
Here follows a example of discrete-time Markov chain.

block Main

state win, good;

state tie (probability = 1.0);

state bad, loss;

event head (probability = p);

event tail (probability = (sub 1.0 p));

parameter p = 0.51;

transition

head: good -> win;

tail: good -> tie;

head: tie -> good;

tail: tie -> bad;

head: bad -> tie;

tail: bad -> loss;

end

win

good

tie

bad

loss

head

head

head

tail

tail

tail



Norwegian University of Science and Technology

S2ML+MRK: discrete-time Markov chains (bis)

12

block Main

state win;

…

event head (probability = p);

…

transition

head: good -> win;

…

end

• Each model is described in a block which contains declarations of objects of the model. 
A block starts with keyword block followed by the name of the model (here Main) and 
ends with the keyword end.

• Five types of basic objects are used to define Markov chains: states, events, 
parameters, transitions and rewards. States and events must be declared before they 
are referred to in transitions. 

• States and events have a name and possibly some attributes, which are used to define 
initial probabilities of states and probabilities and rates of transitions.



Norwegian University of Science and Technology

S2ML+MRK: discrete-time Markov chains (ter)

13

block Main

state win;

…

event head (probability = p);

…

transition

head: good -> win;

…

end

• Attributes are given between after the name (of the node or the event). They are pairs 
(name, value), where value is an arithmetic expression, possibly involving parameters.

• Declarations of nodes, events, parameters, transitions and rewards are terminated with 
a ";".

• Although this is not mandatory, models are usually stored into text files with the 
extension ".mrk".



Norwegian University of Science and Technology

S2ML+MRK: continuous-time Markov chains

14

Continuous-time Markov chains are built in the same way. The only difference is 
that events are given rates and not probabilities. E.g.

WW

WF

FF

fail1

repair1 fail2

repair2

block Main

state WW (probability = 1.0);

state WF, FF;

event fail1 (rate = lambda);

event fail2 (rate = (mul lambda 2.0));

event repair1 (rate = mu);

event repair2 (rate = (mul mu 2.0));

parameter lambda = 1.23e-4;

parameter mu = (div 1 12);

transition

fail2: WW -> WF;

fail1: WF -> FF;

repair1: WF -> WW;

repair2: FF -> WF;

end



Norwegian University of Science and Technology

Rewards

15

In both discrete-time and continuous-time Markov chains it is possible to associate 
rewards, i.e. real valued quantities to states.

WW

WF

FF

fail1

repair1 fail2

repair2

block Main

state WW (probability = 1.0);

state WF, FF;

…

reward Production =

(add (in WW 100) (in WF 70));

end

Point-reward at time t:
100 × 𝑝𝑊𝑊 𝑡 + 70 × 𝑝𝑊𝐹 𝑡

Mean-reward at time t:

100 ×
𝑠𝑗𝑊𝑊(𝑡)

𝑡
+ 70 ×

𝑠𝑗𝑊𝐹(𝑡)

𝑡

where 𝑠𝑗𝑠(𝑡) is the sojourn-time in state s
from time 0 to time t. 



Norwegian University of Science and Technology

Assessment process

16

The assessment process of a model is typically made of the following steps:

1. The model is loaded from a text file.

2. The model is checked and rewritten in a form in which the calculation 
process can start. This steps is called instantiation in the S2ML jargon.

3. Calculations are performed. Results are printed out into text files.



Norwegian University of Science and Technology

Scripts

Andrey is a command interpreter: it reads commands into a text file and execute 
them. There are commands to perform each of the steps described in the previous 
slide.

# Step 1: the model is loaded

load "example/HeadAndTails/HeadAndTailsSmall.mrk"

# Step 2: the model is instantiated

instantiate model

# Step 3: the Markov chain is assessed

assess DTMC Main [1, 2, 3, 4, 5, 10, 11, 20, 21, 100, 200, 1000] 

probabilities=true "results.csv" mode=write

Scripts are text files. Although this is not mandatory, models are usually stored into 
text files with the extension ".andrey".

17



Norwegian University of Science and Technology

Results

18

result.csv

In result files, which are text files, items are separated with tabs so that results can be 
easily loaded into spreadsheets (Excel or equivalent).



Norwegian University of Science and Technology

S2ML+MRK:
BASIC COMPONENTS

19



Norwegian University of Science and Technology

Basic components

Basic components of S2ML+MRK models are:

• Blocks that contain declarations of other objects of a model.

• Declarations of states, events, parameters, rewards and transitions.

• All these declarations (but those of transitions) involve arithmetic expressions.

In the sequel, models are described using this font. Keywords are underlined using 
this font.

S2ML+MRK models must be written using ASCII characters.

Identifiers, i.e. names of elements obeys the following syntax:

• They start with a letter from a to z or from A to Z.

• They are made of any number of letters, digits, underscores "_".

E.g. Plant, failed, R3151, this_is_a_valid_although_a_very_long_name.

20



Norwegian University of Science and Technology

Comments

It is possible to add comments everywhere in a S2ML+MRK model.

• Any sequence of text between /* and */ is a comment, even if it spreads over 
several line.

• All characters after // until the end of the line is a comment.

In the sequel, we shall color comments in italic and green.

/*

* This is a comment before a block declaration

*/

block Plant // This is a comment till the end of the line

// declarations

end

21



Norwegian University of Science and Technology

Blocks

Blocks are the basic container of S2ML+MRK. They are prototypes in the sense of object-
orientation theory. Blocks contain declarations of parameters, states, ports and sources 
(and other elements that will be described later). 

A block declaration starts with the keyword "block", followed by the name of the block. 
It finishes with keyword "end". E.g.

block Task

state work, test;

event done(probability = doneProbability);

event redo(probability = redoProbability);

parameter doneProbability = 0.1;

parameter badProbability = 0.2;

transition

done: work -> test;

redo: test -> work;

end

Within a block, all elements must have a different name, even though they are of 
different types, e.g. a node and a parameter. Elements can be declared in any order.

22



Norwegian University of Science and Technology

States & events

States, and events can be declared either individually or several at a time. They can be 
associated attributes (multiple attributes are separated with commas. E.g.

state rainy (probability = 1.0);

state nice, snowy;

event r2n, r2s(probability = 0.25);

Both events r2n and r2s have the probability 0.25.

The attribute probability of states defines their initial probability.

The attribute probability of events defines their probability in case of discrete-
time Markov chain or of immediate events in continuous-time Markov chains.

The attribute rate of events defines their rate in case of timed events in continuous-
time Markov chains.

23



Norwegian University of Science and Technology

Parameters & rewards

Parameters are used in arithmetic expressions. They are declared together with the 
expression that defines or redefines them. E.g.

parameter failureRate = 1.2e-5;

parameter B.repairRate = (mul 2 A.repairRate);

Rewards are used to associate random variables (real valued quantities) to states of a 
Markov chain. They are defined like parameters with arithmetic expressions. The value 
of a reward in a given state is defined by means of the built-in "in". E.g.

reward Production = (add (in WW 100) (in WF 70));

The reward Production takes the value 100 in the state WW and the value 70 in the 
state WF. Implicitly, it takes the value 0 in all other states.

24



Norwegian University of Science and Technology

Transitions

Transitions are labeled with an event and connect two states, the source state and the 
target state. Both the event and the two states must be declared before the transition 
is declared.

The declaration of one or several transitions must be preceded with the keyword 
"transition".

transition

done: work -> test;

redo: test -> work;

25



Norwegian University of Science and Technology

Arithmetic expressions

26

The current version of Andrey accepts the following arithmetic expressions.

Syntax #arguments Semantics

Identifier 0 Reference to a parameter

Floating point number 0 The number

(add e1 … en)  1 Sum of the arguments

(sub e1 … en)  1 First argument minus the others

(mul e1 … en)  1 Product of the arguments

(div e1 … en)  1 First argument divided by the others

(neg f) 1 Opposite

(min e1 … en)  1 Minimum of its arguments

(max e1 … en)  1 Maximum of its arguments

Examples:
(mul 0.8 weight) (max (sub f g) (sub f g) 1.0)

(neg e)



Norwegian University of Science and Technology

S2ML+MRK:
STRUCTURING CONSTRUCTS

27



Norwegian University of Science and Technology

Hierarchical models

28

Consider a process made of 3 tasks in a row, each task requiring some iterations to 
be achieved. This process could be represented by the following Markov chain.

Strictly speaking the dashed rounded rectangle surrounding the states of each task 
are useless: they do not play any role in the mathematical definition of the chain. 
However, such "macro-states" prove to be very useful to design and to maintain 
models. S2ML provides several constructs to design such hierarchical models.

work

test

bad done

Task A

work

test

bad done

Task B

work

test

bad done

Task C

done

start

good good good

go



Norwegian University of Science and Technology

Blocks in blocks

29

Each task can be represented by a Markov chain. E.g.

block TaskA

state work, test;

event done(probability = doneProbability);

event bad(probability = badProbability);

parameter doneProbability = 0.1;

parameter badProbability = 0.2;

transition

done: work -> test;

bad: test -> work;

end



Norwegian University of Science and Technology

Blocks in blocks (bis)

30

The process can then be represented by the following hierarchical model:

block Process

state start(probability = 1.0);

block TaskA … end

block TaskB … end

block TaskC … end

state done;

event go(probability = 1.0);

event good(probability = (sub 1.0 A.badProbability));

transition

go: start -> A.work;

good: A.test -> B.work;

good: B.test -> C.work;

good: C.test -> done;

end

The block Process composes the blocks TaskA, TaskB and TaskC.



Norwegian University of Science and Technology

Instantiated form

31

The previous hierarchical model is equivalent to the following instantiated model:

block Process

state start(probability = 1.0);

state A.work, A.test;

event A.done(probability = A.doneProbability);

event A.bad(probability = A.badProbability);

parameter A.doneProbability = 0.1;

parameter A.badProbability = 0.2;

transition

A.done: A.work -> A.test;

A.bad: A.test -> A.work;

…

end



Norwegian University of Science and Technology

Cloning

32

Duplicating "by hand" blocks representing similar components would be both tedious 
and error prone in large systems studies. Cloning is the a first solution to this problem.

block Process

block TaskA

…

end

clones TaskA as TaskB;

clones TaskA as TaskC;

state done;

event go(probability = 1.0);

event good(probability = (sub 1.0 A.badProbability));

transition

go: start -> A.work;

good: A.test -> B.work;

good: B.test -> C.work;

good: C.test -> done;

end

This model is equivalent to the first one: their instantiated form are the same. 



Norwegian University of Science and Technology

Models as scripts

33

It is possible to change elements of clones in two ways.
Either directly in the clone directive:

clones TaskA as TaskB

parameter badProbability = 0.3;

end

Or later in the model:

clones TaskA as TaskB;

parameter TaskB.badProbability = 0.3;

This results of the "model as script" concept.



Norwegian University of Science and Technology

Paths

34

Thanks to absolute and relative paths, it is possible to refer to any element from any 
block of hierarchical model.

block Process

block TaskA

block SubTask1

state work, test;

end

end

block TaskB

block SubTask1

state work, test;

transition

FromA: main.TaskA.SubTask1.test -> work;

ToA: test -> owner.owner.TaskA.SubTask1.work;

end

end

end

Absolute path: the keyword main denotes 
the top level block of the hierarchy.

Relative path: the keyword owner denotes 
the parent block in the hierarchy.



Norwegian University of Science and Technology

Classes & instances

35

Another solution consists in creating a on-the-shelf reusable component, via the notion 
of class. Then to instantiate this component as many time as needed. This makes it 
possible to create libraries of reusable modeling components.

class Task

state work, test;

event done(probability = doneProbability);

event bad(probability = badProbability);

parameter doneProbability = 0.1;

parameter badProbability = 0.2;

transition

done: work -> test;

bad: test -> work;

end

block Process

Task A;

Task B;

Task C;

…

end

Again, this model is equivalent to the first 
one: their instantiated form are the same. 



Norwegian University of Science and Technology

Models as scripts (bis)

36

It is possible to change elements of instances in two ways.
Either directly in the instance declaration:

Task B

parameter badProbability = 0.3;

end

Or later in the model:

Task B;

parameter B.badProbability = 0.3;



Norwegian University of Science and Technology

Inheritance

37

Assume that we have to consider two kinds of tasks: simple tasks, which just perform 
some work, and full tasks that perform tests. It is possible to create first a class 
describing simple tasks, then to extends this class for full tasks. This mechanism is 
called inheritance.

class SimpleTask

state work, test;

event done(probability = doneProbability);

parameter doneProbability = 0.1;

transition

done: work -> test;

end

class FullTask

extends SimpleTask;

event bad(probability = badProbability);

parameter badProbability = 0.2;

transition

bad: test -> work;

end



Norwegian University of Science and Technology

Aggregation

38

Aggregation denotes a "uses" kind of a relation between blocks (or instances of classes).

block Process

block DataBase

parameter badProbability = 0.3;

end

block TaskA

block SubTask1

embeds main.DataBase as DB;

state work, test;

event bad(probability = DB.badProbability); 

transition

bad: test -> work;

end

end

end

Aggregation: within the block SubTask1, DB becomes 
an alias for main.DataBase.



Norwegian University of Science and Technology

ANDREY COMMANDS

39



Norwegian University of Science and Technology

Role of commands

Categories of commands:

Andrey commands can be split into the following categories.

1. Commands to load, to check and to instantiate models.

2. Commands to assess models.

3. Commands to print out information, e.g. models.

Normally, commands of type 1, 2 and 3 are applied in sequence.

Order of arguments:

The order of arguments in a command matters, even though some arguments are 
optional. You have to follow strictly the syntax described in this section.

Optional arguments:

Optional arguments are given in a special form: name=value, where name is the name 
of the argument and value its value.

40



Norwegian University of Science and Technology

General considerations

One line commands:

Andrey commands spread normally over one line. It is however possible to write a 
command on several line by escaping the end of line is escaped with an anti-slash "\", 
e.g.

compute DTMC Main [1, 2, 3, 4, 5, 10, 100, 1000] \

"statistics.txt" mode=append

Comments:

Comments can be introduced in Andrey scripts. Any character between the character 
# and the end of the line is a comment. We shall underline comment in green. E.g.

# this is a comment

41



Norwegian University of Science and Technology

File names and modes

File names:

Most of the commands require an input or an output file name as argument. File 
names can be given directly, e.g. examples/LandOfOz.mrk or surrounded with 
quotes, e.g. "examples/LandOfOz.mrk".

The second form is mandatory when the file name or path includes spaces. It is wise 
to use it anyway.

Output file modes:

When opening a file to print out something, Andrey can do it in two modes: either the 
file is overwritten if it exists already -- this is the mode write --, or the new 
information is appended at the end of the existing file -- this is the mode append. If 
the file did not exists, it is created in both cases. By default, the mode is write. E.g.

compute DTMC Main 1000 "results.txt" mode=append

The above command calculate the shortest path from node A to node B and appends 
the result to the file results.txt.

42



Norwegian University of Science and Technology

Result files

43

Model Main

Probabilities 1 2 3 4 5 100

A.ping 0.5 0.5 0.4375 0.390625 0.347656 0.196721

A.pong 0.5 0.375 0.34375 0.304688 0.271484 0.131148

B.ping 0.0 0.125 0.15625 0.195313 0.220703 0.196721

B.pong 0.0 0.0 0.0625 0.09375 0.121094 0.131148

C.ping 0.0 0.0 0.0 0.015625 0.0328125 0.213115

C.pong 0.0 0.0 0.0 0.0 0.00625 0.131148

result.txt

As much as possible, result files are organized in a way they can be loaded into 
spreadsheets (Excel or equivalent). Items are separated with tabs. Methods to load 
such text files differ from one spreadsheet tool to another. 



Norwegian University of Science and Technology

Floating point numbers

Andrey implements numerical solutions of Markov chains, i.e. everything is done by 
multiplying vectors (which contains probabilities of states) by the Markov chain (which 
can be seen as a sparse matrix).

This approach makes it possible to assess very large models. But it has a drawback as 
well: probabilities are encoded by means of floating point numbers. Floating point 
numbers encode reals with a given precision. To implement Andrey's calculations, the 
Python package mpmath is used. This package makes it possible to encode floating 
point numbers with any precision, but this precision must be chosen beforehand. 

The current implementation makes the choice of having a precision of about 10-30, 
which corresponds roughly speaking to an encoding of floating point numbers on 128 
bits. Moreover, we had to decide when to consider that two probabilities are almost 
equal. We chose 10-20 as a threshold. Both thresholds are arbitrary and can be easily 
changed in the code (they are defined in the module S2MLCore/S2MLReals.py).

This to say that the user should not be surprised to see numbers around 10-20 appear 
in the result files where he or she would expect 0.0. 

44



Norwegian University of Science and Technology

Command to assess discrete-time Markov chains

assess DTMC blockName numbersOfIterations

[probabilities=True] [point-reward=True]

fileName [mode=(append|write)]

numbersOfIterations ::= Integer | "[" Integer ("," Integer)* "]"

This command computes the probabilities of states of the given discrete-time Markov 
chain after the given number(s) of iterations. It prints out (if demanded) these 
probabilities and point rewards into the given file.

45



Norwegian University of Science and Technology

Command to assess continuous-time Markov chains

assess CTMC blockName missionTimes

[probabilities=True] [sojourn-times=True]

[point-rewards=True] [mean-rewards=True]

fileName [mode=(append|write)]

missionTimes ::= Float | "[" Float ("," Float)* "]"

This command computes the probabilities of states of the given continuous-time 
Markov chain at the given mission(s) times. It implements the matrix exponentiation 
algorithm in its pure numerical form, i.e. by only multiplying vectors (encoding 
probabilities of states) by the probability matrix associated with Markov chain (this 
matrix is encoded as a sparse matrix). It prints out (if demanded) these probabilities, 
sojourn-times,  point rewards and mean rewards into the given file.

46



Norwegian University of Science and Technology

Commands to print out information

print model fileName [mode=(append|write)]

This command prints out the original model.

print instantiated-model fileName [mode=(append|write)]

This command prints out the instantiated model.

47



Norwegian University of Science and Technology

REFERENCES

48



Norwegian University of Science and Technology

References

Recommend books on Markov chains:

William J. Stewart. Introduction to the Numerical Solution of Markov Chains. Princeton 
University Press. Princeton, New Jersey, USA.  ISBN 978-0691036991. 1994.

49



Norwegian University of Science and Technology

APPENDIX

50



Norwegian University of Science and Technology

GRAMMAR OF S2ML+MRK

51



Norwegian University of Science and Technology

Models

Model ::= (ClassDeclaration | BlockDeclaration)*

ClassDeclaration ::=

class Identifier BlockField* end

BlockDeclaration ::=

block Identifier BlockField* end

BlockField ::=

StateDeclaration | EventDeclaration | ParameterDeclaration

| RewardDeclaration | TransitionDeclaration

| BlockDeclaration | InstanceDeclaration

| ExtendsDirective | EmbedsDirective | ClonesDirective

52



Norwegian University of Science and Technology

States, events & transitions

StateDeclaration ::=

state Identifier ("," Identifier)* Attributes? ";"

EventDeclaration ::=

event Identifier ("," Identifier)* Attributes? ";"

TransitionDeclaration ::=

transition Transition*

Transition ::=

Path ":" Path "->" Path ";"

Attributes ::=

"(" Attribute ( "," Attribute )+ ")"

Attribute ::=

Identifier "=" ArithmeticExpression

53



Norwegian University of Science and Technology

Parameters, rewards & arithmetic expressions

ParameterDeclaration ::=

parameter Path "=" ArithmeticExpression ";"

ParameterDeclaration ::=

reward Path "=" ArithmeticExpression ";"

ArithmeticExpression ::=

Path # reference to parameter

| Float

| "(" add ArithmeticExpression+ ")"

| "(" sub ArithmeticExpression+ ")"

| "(" mul ArithmeticExpression+ ")"

| "(" div ArithmeticExpression+ ")"

| "(" neg ArithmeticExpression ")"

| "(" min ArithmeticExpression+ ")"

| "(" max ArithmeticExpression+ ")"

54



Norwegian University of Science and Technology

Directives

InstanceDeclaration ::=

Identifier Identifier ";" # ClassName InstanceName

| Identifier Identifier BlockField* end # idem

ClonesDirective ::=

clones Path as Identifier ";" # BlockPath CloneName

| clones Path as Identifier BlockField* end # idem

ExtendsDirective ::=

extends Identifier ";" # ClassName

EmbdesDirective ::=

embeds Path as Identifier ";" # BlockPath LocalName

| embeds Path as Identifier BlockField* end # idem

55



Norwegian University of Science and Technology

Identifiers, paths, constants & comments

Identifier ::= [a-zA-Z_][a-zA-Z0-9_-]+

Path ::= Identifier ( "." Identifier )*

Integer ::= [0-9]+

Float ::= [+-]? [0-9]+ ("." [0-9]+)? ([eE] [+-]? [0-9]+)?

Comments can be added everywhere in the code.

• Single line comments introduced by //, which comment out the rest of the line.

• Multiline comments which comment out the text between /* and */.

56



Norwegian University of Science and Technology

GRAMMAR OF ANDREY COMMAND

57



Norwegian University of Science and Technology

Scripts, commands load and instantiate

Script ::= Command*

Command ::=

CommandLoad

| CommandInstantiate

| CommandAssess

| CommandPrint

CommandLoad ::=

load model fileName

| load script fileName

CommandInstantiate ::=

instantiate model

58



Norwegian University of Science and Technology

Commands assess

CommandAssess ::=

CommandComputeDTMC

| CommandComputeCTMC

CommandComputeDTMC ::=

compute DTMC blockName NumbersOfIterations

(probabilities = True)? (point-rewards = True)? 

fileName [mode=(append|write)] 

NumbersOfIterations ::=

Integer

| "[" Integer ("," Integer)* "]"

59



Norwegian University of Science and Technology

Commands assess (bis)

CommandComputeCTMC ::=

compute CTMC blockName MissionTimes

(probabilities = True)? (sojourn-times = True)? 

(point-rewards = True)? (mean-rewards = True)? 

fileName [mode=(append|write)] 

MissionTimes ::=

Float

| "[" Float ("," Float)* "]"

60



Norwegian University of Science and Technology

Command print

CommandPrint ::=

CommandPrintModel

| CommandPrintInstantiatedModel

CommandPrintModel ::=

print model fileName [mode=(append|write)]

CommandPrintInstantiatedModel ::=

print instantiated-model fileName [mode=(append|write)]

61



Norwegian University of Science and Technology

Comments

All characters comprised between a # symbol and the end of the line are considered 
as part of a comment.

62



Norwegian University of Science and Technology

KNOWN BUGS

63



Norwegian University of Science and Technology

Known bugs

64


