
Norwegian University of Science and Technology

Janos
A pedagogical stochastic simulator.

Antoine Rauzy
Antoine.Rauzy@ntnu.no



Norwegian University of Science and Technology

Licenses & versions

2

The present document is distributed under Creative Common 
License CC-BY-ND.

Janos is free software distributed by the AltaRica Association under GNU 
GPLv3 license.

Version 1.2.1

Date 23.03.2022



Norwegian University of Science and Technology 3

John von Neumann (Hungarian: Neumann János Lajos) was a 
Hungarian-American mathematician, physicist and computer 
scientist. Von Neumann is generally regarded as the foremost 
mathematician of his time and said to be "the last representative of 
the great mathematicians"; a genius who was comfortable 
integrating both pure and applied sciences.
He made major contributions to a number of fields, including 
mathematics (foundations of mathematics, functional analysis, 
ergodic theory, representation theory, operator algebras, geometry, 
topology, and numerical analysis), physics (quantum mechanics, 
hydrodynamics, and quantum statistical mechanics), economics 
(game theory), computing (Von Neumann architecture, linear 
programming, self-replicating machines, stochastic computing), and 
statistics.
He was a pioneer of the application of operator theory to quantum 
mechanics in the development of functional analysis, and a key 
figure in the development of game theory and the concepts of 
cellular automata, the universal constructor and the digital 
computer.

John von Neumann
1903 - 1957

Source Wikipedia



Norwegian University of Science and Technology

Table of contents

• Introduction

• Getting Started

• The S2ML+DFE modeling language

– Basic components

– Structuring constructs

• Commands

• References

Appendix

• Grammar of S2ML+DFE models

• Grammar of Janos commands

• Known bugs

4



Norwegian University of Science and Technology

INTRODUCTION

5



Norwegian University of Science and Technology

Rational

Since its introduction in the late 1940s by Stanislaw Ulam and John von Neumann, the Monte-
Carlo method is pervasive in sciences and engineering. The main idea behind this method is 
that the result of a certain calculation is computed based on repeated random sampling and 
statistical analysis. This method applies not only to calculations on stochastic models, but also 
to calculations on deterministic ones for which there is no analytical solutions or analytical 
solutions are too difficult to obtain.

Janos is a pedagogical stochastic simulator:

• Models are systems of data-flow equations written in the S2ML+DFE domain specific 
modeling language, which is the combination of S2ML (S2ML stands for system structure 
modeling language), a set of object-oriented constructs to structure models and systems 
of data-flow equations.

• It implements the Monte-Carlo simulation.

• It comes as a command interpreter, making it possible to perform various studies.

This presentation specifies S2ML+DFE as well as the commands to manage models and launch 
simulations.

Janos is developed in Python, for pedagogical purposes only. It is by orders of magnitude less 
efficient than available commercial tools.

The objective is to familiarize students with Monte-Carlo simulation and modeling languages.

6



Norwegian University of Science and Technology

Installing and running Janos

To install Janos you just need to decompress the archive "Janos1.2.0.zip" into local 
directory. Source files are the Python file "Janos.py" as well as the directory "src" and 
its content.

To run Janos you have to open the file  Python file "Janos.py" into your Python 
environment, set up the current directory and the script file and run it.

7



Norwegian University of Science and Technology

Organization of this document

The remainder of this document is organized as follows.

• Section Getting started is a small introduction to Janos.

The two next sections describe S2ML+DFE:

• Section Basic components presents the core of the language.

• Section Structuring constructs presents object-oriented constructs to structure models.

The next section describes the command interpreter:

• Section Commands describes Janos commands.

Finally, the appendix completes this document.

• Appendix S2ML+DFE gives the Backus-Naur form of the modeling language.

• Appendix Janos gives the Backus-Naur form of Janos commands.

• Appendix Known bugs reports know problems with the current version of Janos.

8



Norwegian University of Science and Technology

GETTING STARTED

9



Norwegian University of Science and Technology

S2ML+DFE

10

S2ML+DFE is a textual format to describe systems of data-flow equations. E.g.

block Main

Real x, y;

Boolean inDisk;

assertion

x := uniformDeviate(0.0, 1.0);

y := uniformDeviate(0.0, 1.0);

inDisk := x*x + y*y <= 1.0;

observer Real piEstimator = if inDisk then 4.0 else 0.0;

end

• Each model is described in a block which contains declarations of objects of the 
model. A block starts with keyword block followed by the name of the model (here 
Main) and ends with the keyword end.

• Four types of basic objects are used to define systems of data-flow equations: 
parameters, variables, equations and observer. Variables and parameters must be 
declared before they are referred to in equations. 



Norwegian University of Science and Technology

S2ML+DFE (bis)

11

block Main

Real x, y;

Boolean inCircle;

assertion

x := uniformDeviate(0.0, 1.0);

y := uniformDeviate(0.0, 1.0);

inDisk := x*x + y*y <= 1.0;

observer Real piEstimator = if inDisk then 4.0 else 0.0;

end

• Variables have a type and a name. Here three variables are declared: x and y
which are real and inCircle which is Boolean.

• The value of variables is calculated by means of equations. Each equation is in the 
form  v := E, where v is a variable and E is an expression. For each variable, there 
must be one and only one equation whose left member is the variable. Moreover, 
the set of equations must be data-flow, i.e. that a variable cannot depend on 
itself.



Norwegian University of Science and Technology

S2ML+DFE (ter)

12

block Main

Real x, y;

Boolean inCircle;

assertion

x := uniformDeviate(0.0, 1.0);

y := uniformDeviate(0.0, 1.0);

inDisk := x*x + y*y <= 1.0;

observer Real piEstimator = if inDisk then 4.0 else 0.0;

end

• Expressions can be deterministic or stochastic. Here:

− The values of x and y are drawn at random uniformly in the range [0, 1].

− The value of inCircle is fully determined by the values of x and y, namely 
inCircle is true if and only if the sum of the squares of x and y is less or 
equal to 1. 



Norwegian University of Science and Technology

S2ML+DFE (quater)

13

block Main

Real x, y;

Boolean inCircle;

assertion

x := uniformDeviate(0.0, 1.0);

y := uniformDeviate(0.0, 1.0);

inDisk := x*x + y*y <= 1.0;

observer Real piEstimator = if inDisk then 4.0 else 0.0;

end

• Observers have a type and name. They are defined by a expression. This expression 
must be deterministic. Here:

− piEstimator is equal to 4.0 if inCircle is true and 0.0 otherwise.

• Observers are the quantities on which statistics are made.



Norwegian University of Science and Technology

Assessment process

14

The assessment process of a model is typically made of the following steps:

1. The model is loaded from a text file.

2. The model is checked and rewritten in a form in which the simulation 
process can start. This step is called instantiation in the S2ML jargon.

3. The parameters of the stochastic simulation are defined.

4. The stochastic simulation is actually performed. Results are printed out 
into text files.



Norwegian University of Science and Technology

Scripts

Janos is a command interpreter: it reads commands into a text file and execute them. 
There are commands to perform each of the steps described in the previous slide.

Scripts are text files. Although this is not mandatory, models are usually stored into 
text files with the extension ".janos".

# Step 1: the model is loaded

load "Pi.dfe"

# print model "model.dfe"

# Step 2: the model is instantiated

flatten model

# print target-model "target.dfe"

15



Norwegian University of Science and Technology

Scripts (bis)

# Setting parameters of the stochastic simulation

set seed 23456

set number-of-tries 100000

profile set mean profile1 true

profile set standard-deviation profile1 true

profile set confidence-interval-90 profile1 false

profile set confidence-interval-95 profile1 true

profile set confidence-interval-99 profile1 false

profile set extrema profile1 true

profile set quantiles profile1 false

profile set distribution profile1 true

profile set cumulative-distribution profile1 true

profile set number-of-points profile1 10

# print environment "environment.txt"

16



Norwegian University of Science and Technology

Scripts (ter)

# Launching stochastic simulation

compute observers Main mission-times [0] \

output="result.csv" mode=write

17



Norwegian University of Science and Technology

Results

18

results.csv

In result files, items are separated with tabs so that results can be easily loaded into 
spreadsheets (Excel or equivalent).

Model Main

Number-of-
tries

100000

Observer piEstimator

Mission-
time

0

Mean
Standard-
deviation

95% 
confidence 
range

Minimum Maximum

3.14876 1.63719 3.13861 3.15891 0 4



Norwegian University of Science and Technology

S2ML+DFE:
BASIC COMPONENTS

19



Norwegian University of Science and Technology

Basic components

Basic components of S2ML+DFE models are:

• Blocks that contain declarations of other objects of a model.

• Declarations of parameters.

• Declarations of variables.

• Declarations of equations.

• Declarations of observers.

In the sequel, models are described using this font. Keywords are underlined using 
this font.

S2ML+DFE models must be written using ASCII characters.

Identifiers, i.e. names of blocks, states, ports and parameters (and other objects 
introduced in the next sections) obeys the following syntax:

• They start with a letter from a to z or from A to Z.

• They are made of any number of letters, digits, underscores "_".

E.g. Plant, failed, R3151, this_is_a_valid_although_a_big_long_name.

20



Norwegian University of Science and Technology

Comments

It is possible to add comments everywhere in a S2ML+DFE model.

• Any sequence of text between /* and */ is a comment, even if it spreads over 
several line.

• All characters after // until the end of the line is a comment.

In the sequel, we shall color comments in italic and green.

/*

* This is a comment before a block declaration

*/

block Plant // This is a comment till the end of the line

// declarations

end

21



Norwegian University of Science and Technology

Blocks

Blocks are the basic container of S2ML+DFE. They are prototypes in the sense of object-
orientation theory. Blocks contain declarations of parameters, states, ports and sources 
(and other elements that will be described later). 

A block declaration starts with the keyword "block", followed by the name of the block. 
It finishes with keyword "end". E.g.

block Main

…

end

Within a block, all elements must have a different name, even though they are of 
different types, e.g. a variable and a parameter. Elements can be declared in any order, 
but parameters and variables must be declared before they are used in equations.

22



Norwegian University of Science and Technology

Domains (basic types)

Parameters, variables and observers are typed. Basic types are:

• Boolean, i.e. either true or false.

• Integer.

• Real.

It is also possible to declare domains, i.e. set of symbolic constants. Parameters and 
variables can be then declared with such domain (observers must be integers or reals).

domain State {WORKING, DEGRADED, FAILED)

block Main

…

State _state;

…

end

23



Norwegian University of Science and Technology

Parameters

Parameters are used in arithmetic expressions. They are declared together with the 
expression that defines them. E.g.

parameter Real baseCapacity = 100.0;

parameter Real specialCapacity = 2 * baseCapacity;

Expressions defining parameters must be deterministic. Parameters cannot depend on 
variables and observers. They can depend on other parameters. However, a parameter 
cannot depend on itself. 

24



Norwegian University of Science and Technology

Variables and equations

Variables can be declared either individually or several at a time. E.g.

Real x, y, z;

The value of variables is calculated by means of equations. In the current version of 
Janos, there are two types of equations:

• Equations of the form x := E; where x is a variable and E is an expression.

• Equations of the form x :=: y; where both x and y are variables.

For each variable, there must be one and only one equation whose left member is the 
variable. Moreover, the set of equations must be data-flow, i.e. that a variable cannot 
depend on itself.

Equations of the second form are thus automatically rewritten in equations of the first 
form when the model is instantiated, possibly by swapping left and right members.

25



Norwegian University of Science and Technology

Observers

Observers are the quantities on which statistics are made. As parameters, they have a 
type and name. They are defined by a expression. 

observer Real piEstimator = if inCircle then 4.0 else 0.0;

The type of observers is either integer or real. Expressions that define them must be 
deterministic. They can depend on parameters and variables, but not on other 
observers.

26



Norwegian University of Science and Technology

Expressions

The current version of Janos provides several types of expressions:

• Arithmetic expressions and built-in functions

• Trigonometric functions

• Boolean expressions

• Inequalities

• Random-deviates

• Conditional expressions

• Special built-in functions

In any expression, a reference to a parameter or a variable can be used, under the 
conditions given in infra, i.e.

• Parameters can only depend on parameters and cannot depend on themselves.

• Variables can depend on parameters and variables but cannot depend on 
themselves.

27



Norwegian University of Science and Technology

Arithmetic expressions

28

The current version of Janos implements the following arithmetic expressions.

Syntax #arguments Semantics

Floating point number 0 The number

pi 0 p

e1 + … + en  1 Sum of the arguments

e1 - … - en  1 First argument minus the others

e1 * … * en  1 Product of the arguments

e1 / …  / en  1 First argument divided by the others

- e 1 Opposite

min(e1, …, en)  1 Minimum of its arguments

max(e1, …, en)  1 Maximum of its arguments

Examples:
0.8 * weight max(f-g, g-f, 1.0)     3*(x+y)

-e



Norwegian University of Science and Technology

Arithmetic built-in functions

29

The current version of Janos implements the following arithmetic built-ins.

Syntax #arguments Semantics

exp(e) 1 exponential

log(e) 1 (Natural) logarithm

pow(e1, e2) 2 Power

sqrt(e) 1 Square root

floor(e) 1 Largest integer under

ceil(e) 1 Smallest integer above

abs(e) 1 Absolute value

mod(e1, e2) 2 Modulo

Gamma(e) 1 Gamma function



Norwegian University of Science and Technology

Trigonometric functions

30

The current version of Janos implements the following arithmetic built-ins.

Syntax #arguments Semantics

sin(e) 1 Sine

cos(e) 1 Cosine

tan(e) 1 Tangent

asin(e) 1 Arc sine

acos(e) 1 Arc cosine

atan(e) 1 Arc tangent



Norwegian University of Science and Technology

Boolean expressions

31

The current version of Janos implements the following Boolean expressions.

Syntax #arguments Semantics

false, true 0 Boolean constants

e1 and … and en  1 Conjunction of the arguments

e1 or … or en  1 Disjunction of the aguments

not e 1 Negation

count(e1, …, en)  1 Number of true expressions in the list

Examples:
a and b (f and g) or (not f and h)

not e



Norwegian University of Science and Technology

Inequalities

32

The current version of Janos accepts the following inequalities.

Syntax #arguments Semantics

e1 == e2 2 Equal

e1 != e2 2 Different

e1 < e2 2 Less than

e1 > e2 2 Greater than

e1 <= e2 2 Less or equal

e1 >= e2 2 Greater or equal

Examples:
0.8==weight f - g < x * y



Norwegian University of Science and Technology

Random deviates

33

The current version of Janos implements the following random deviates

Syntax #arg Semantics

uniformDeviate(l, h) 2
The value is drawn at random uniformly in 
the range [l, h]

normalDeviate(m, s) 2

The value is drawn at random according to 
a normal distribution of mean m and 
standard deviation s.

lognormalDeviate(m, s) 2

The value is drawn at random according to 
a lognormal distribution of mean m and 
standard deviation s.

triangularDeviate(l, h, m) 3

The value is drawn at random according to 
a triangular distribution of lower bound l, 
higher bound h and mode m.



Norwegian University of Science and Technology

Random deviates (bis)

34

The current version of Janos implements the following random deviates

Syntax #arg Semantics

exponentialDeviate(r) 1

The value is drawn at random according to 
a the inverse of a negative exponential 
distribution of rate r.

WeibullDeviate(a, b) 2

The value is drawn at random according to 
the inverse of a Weibull distribution of 
scale parameter a and shape parameter b.



Norwegian University of Science and Technology

Conditional expressions and special built-in

35

The current version of Janos implements the following conditional expressions.

Syntax #arg Semantics

if c then e1 else e2 3 Equal to e1 if c is true and to e2 otherwise

Example:
if x<=y then 1.0 else 2.0

The current version of Janos implements the following special built-in.

Syntax #arg Semantics

missionTime() 0 Returns the current mission time



Norwegian University of Science and Technology

Priority Rules (Precedence of Operators)

36

S2ML+DFE (and more generally all languages of the S2ML+X family) obeys the usual 
precedence rules for operators. Parentheses are used to solve ambiguities.

Priority (decreasing order)

or

and

not

==, !=, <, >, <=, >=

- (n-ary)

+

/

*

- (unary)

all others

f and g or not f and h 

reads
(f and g) or ((not f) and h)

x>=y+0.0 and x<y+1.0

reads
(x>=(y+0.0)) and (x<(y+1.0))

3*-x+3/4

reads
(3*(-x)) + (3/4)



Norwegian University of Science and Technology

S2ML+DFE:
STRUCTURING CONSTRUCTS

37



Norwegian University of Science and Technology

Case study: metro line

38

To present S2ML structuring construct, we shall consider the following case study.
A metro line goes from station A to station E, through stations B, C and D (in order).
The journey from a station to the next one has a certain duration (measured in 
seconds). Similarly, the stop at each station has a certain duration. However, due to 
the number of passengers, the metro main be delayed at each station. It has been 
observed that this delay is uniformly distributed between two bounds.

The whole journey can thus be pictured as:

Station A Station B Station C Station D Station E



Norwegian University of Science and Technology

Blocks in blocks

39

block StationA

Real arrival, departure, delay;

parameter Real duration = 40;

parameter Real low = 0;

parameter Real high = 20;

assertion

delay := uniformDeviate(low, high);

departure := arrival + duration + delay;

end

On way of designing a model for the metro line is to consider stations as sub-
models, and then to combine them at line level. E.g.



Norwegian University of Science and Technology

Blocks in blocks (bis)

40

The system can then be represented by the following hierarchical model:

block MetroLine

block StationA

…

end

block StationB

…

end

…

parameter Real AtoBduration = 120;

…

parameter Real DtoEduration = 100;

assertion

StationA.arrival := 0;

StationB.arrival := StationA.departure + AtoBduration;

…

end



Norwegian University of Science and Technology

Instantiated form

41

The previous hierarchical model is equivalent to the following instantiated model:

block MetroLine

Real StationA.arrival, StationA.departure, StationA.delay;

parameter Real StationA.duration = 40;

parameter Real StationA.low = 0;

parameter Real StationA.high = 20;

assertion

StationA.delay := uniformDeviate(StationA.low, StationA.high);

StationA.departure := 

StationA.arrival + StationA.duration + StationA.delay;

…

parameter Real AtoBduration = 120;

…

parameter Real DtoEduration = 100;

assertion

StationA.arrival := 0;

StationB.arrival := StationA.departure + AtoBduration;

…

end



Norwegian University of Science and Technology

Cloning

42

Duplicating "by hand" blocks representing similar components would be both tedious 
and error prone in large systems studies. Cloning is a first solution to this problem.

block MetroLine

block StationA

Real arrival, departure, delay;

parameter Real duration = 40;

parameter Real low = 0;

parameter Real high = 20;

assertion

delay := uniformDeviate(low, high);

departure := arrival + duration + delay;

end

clones StationA as StationB;

…

end



Norwegian University of Science and Technology

Models as scripts

43

It is possible to change elements of clones in two ways.
Either directly in the clone directive:

clones StationA as StationB

parameter Real high = 30;

end

Or later in the model:

clones StationA as StationB;

parameter Real StationB.high = 30;

This results of the "model as script" concept.



Norwegian University of Science and Technology

Paths

44

Thanks to absolute and relative paths, it is possible to refer to any element from any 
block of hierarchical model.

block Network

block Zone1

block StationA

Real departure;

end

end

block Zone2

block StationB

Real arrival;

assertion

arrival := main.Zone1.StationA.departure + …; // or

arrival := owner.owner.Zone1.StationA.departure + …;

end

end

end

Absolute path: the keyword main denotes 
the top level block of the hierarchy.

Relative path: the keyword owner denotes 
the parent block in the hierarchy.



Norwegian University of Science and Technology

Classes & instances

45

Another solution consists in creating a on-the-shelf reusable component, via the notion 
of class. Then to instantiate this component as many times as needed. This makes it 
possible to create libraries of reusable modeling components.

class Station

Real arrival, departure, delay;

parameter Real duration = 40;

parameter Real low = 0;

parameter Real high = 20;

assertion

delay := uniformDeviate(low, high);

departure := arrival + duration + delay;

end



Norwegian University of Science and Technology

Classes & instances (bis)

46

Another solution consists in creating a on-the-shelf reusable component, via the notion 
of class. Then to instantiate this component as many times as needed. This makes it 
possible to create libraries of reusable modeling components.

block MetroLine

Station A;

Station B;

…

parameter Real AtoBduration = 120;

…

parameter Real DtoEduration = 100;

assertion

A.arrival := 0;

B.arrival := A.departure + AtoBduration;

…

end



Norwegian University of Science and Technology

Models as scripts (bis)

47

It is possible to change elements of instances in two ways.
Either directly in the instance declaration:

Station B

parameter Real high = 30.0;

end

Or later in the model:

Station B;

parameter Real B.high = 30.0;



Norwegian University of Science and Technology

Inheritance

48

Assume that we have to consider two kinds of stations: simple stations, which only 
one duration of stops and large stations, with two (or more) stop durations. It is 
possible to create first a class describing simple stations, then to extends this class for 
large stations. This mechanism is called inheritance.

class SimpleStation

Real arrival, departure, delay;

parameter Real duration = 40;

parameter Real low = 0;

parameter Real high = 20;

assertion

delay := uniformDeviate(low, high);

departure := arrival + duration + delay;

end

class LargeStation

extends SimpleStation;

parameter Real high = 40;

end



Norwegian University of Science and Technology

Aggregation

49

Aggregation denotes a "uses" kind of a relation between blocks (or instances of classes).

block MetroLine

block Controller

parameter Real regularStopTime = 40;

end

block Zone1

block StationA

embeds main.Controller as CTRL;

Real arrival, departure, delay;

parameter Real duration = CTRL.regularStopTime;

…

end

end

end

Aggregation: within the block StationA, CTRL becomes 
an alias for main.Controller.



Norwegian University of Science and Technology

JANOS COMMANDS

50



Norwegian University of Science and Technology

Role of commands

Categories of commands:

Janos commands can be split into the following categories.

1. Commands to load, to check and to instantiate models.

2. Commands to set parameters of the stochastic simulation and to launch stochastic 
simulation.

3. Commands to print out information, e.g. models.

Normally, commands of type 1, 2 and 3 are applied in sequence.

Order of arguments:

The order of arguments in a command matters, even though some arguments are 
optional. You have to follow strictly the syntax described in this section.

Optional arguments:

Optional arguments are given in a special form: name=value, where name is the name 
of the argument and value its value.

51



Norwegian University of Science and Technology

General considerations

One-line commands:

Janos commands spread normally over one line. It is however possible to write a 
command on several line by escaping the end of line is escaped with an anti-slash "\", 
e.g.

compute observers Main mission-times=[0, 4380, 8760] \

output="statistics.txt" mode=append

Comments:

Comments can be introduced in Janos scripts. Any character between the character # 
and the end of the line is a comment. We shall underline comment in green. E.g.

# this is a comment

52



Norwegian University of Science and Technology

File names and modes

File names:

Most of the commands require an input or an output file name as argument. File 
names can be given directly, e.g. examples/Pi/Pi.sse or surrounded with quotes, 
e.g. "examples/Pi/Pi.sse".

The second form is mandatory when the file name or path includes spaces. It is wise 
to use it anyway.

Output file modes:

When opening a file to print out something, Janos can do it in two modes: either the 
file is overwritten if it exists already -- this is the mode write --, or the new 
information is appended at the end of the existing file -- this is the mode append. If 
the file did not exist, it is created in both cases. By default, the mode is write. E.g.

compute observers Main [8760] "results.txt" mode=append

The above command calculates the shortest path from node A to node B and appends 
the result to the file results.txt.

53



Norwegian University of Science and Technology

Result files

54

Result files are organized in a way they can be loaded into spreadsheets (Excel or 
equivalent). Items are separated with tabs. Methods to load such text files differ from 
one spreadsheet tool to another. 

Model Main

Number-of-
tries

100000

Observer piEstimator

Mission-
time

0

Mean
Standard-
deviation

95% 
confidence 
range

Minimum Maximum

3.14876 1.63719 3.13861 3.15891 0 4



Norwegian University of Science and Technology

Monte-Carlo Simulation

The command compute performs a Monte-Carlo simulation when the number of 
tries is positive. Otherwise, it performs a unique simulation. The number of tries is set 
by the following command.

set number-of-tries Integer

The simulations involve the generation of numbers at random by means of so-called 
pseudo-random number generators. The one used in Janos is the Mersenne-Twister 
generator. This generator can be given a starting point, called the seed, which is set by 
means of the following command.

set seed Integer

Two executions starting with the same seed are strictly the same.

55



Norwegian University of Science and Technology

Profiles

Monte-Carlo simulations perform statistics on the values of observers. The statistics to 
be made are specified via profiles. Profiles have names. They can be created, deleted 
and cloned. E.g.

profile new myProfile1

profile clone profile1 myProfile2

profile delete myProfile1

By default, the command compute is called with the profile named profile1. It is 
possible to call it within another profile by specifying the name of the latter. E.g.

compute observers Main mission-times=[0, 4380, 8760] \

output="statistics.txt" mode=append \

profile=myProfile2

56



Norwegian University of Science and Technology

Statistics

Statistics to be performed are defined by means of the command profile set.

profile set mean Identifier Boolean

To display the mean of the values of observers.

profile set standard-deviation Identifier Boolean

To display the standard-deviation of the values of observer.

profile set confidence-range-XX Identifier Boolean

To display the XX confidence range of the values of observer. XX must be either 90, 
95 or 99.

profile set extrema Identifier Boolean

To display the minimum and the maximum value of the observer.

57



Norwegian University of Science and Technology

Statistics (bis)

profile set quantiles Identifier Boolean

To calculate quantiles.

profile set number-of-quantiles Identifier Integer

To set the number of quantiles (should be larger than 0 and smaller than 100).

profile set distribution Identifier Boolean

profile set cumulative-distribution Identifier Boolean

To calculate the distribution and the cumulative distribution of values.

profile set number-of-points Identifier Integer

To set the number of points of the distributions (should be larger than 0 and 
smaller than 100).

58



Norwegian University of Science and Technology

Command to perform stochastic simulations

compute observers blockName option*

This command launches the stochastic simulation on the given block. The values 
of variables and observers are calculated at the given mission times and statistics 
are performed for each observer and each mission time.

Parameters of the stochastic simulation can be either specified using the "set" 
command (recommended) or by introducing them as options in the command 
line. E.g. to set the number of tries:

set number-of-tries 10000

compute observers Main mission-times=[8760]

59



Norwegian University of Science and Technology

Commands to print out information

print model fileName [mode=(append|write)]

This command prints out the original model.

print instantiated-model fileName [mode=(append|write)]

This command prints out the instantiated model.

print environment fileName [mode=(append|write)]

This command prints out the environment, i.e. the values of parameters of the stochastic 
simulation.

60



Norwegian University of Science and Technology

REFERENCES

61



Norwegian University of Science and Technology

References

Recommend books on stochastic simulation:

Enrico Zio. The Monte Carlo Simulation Method for System Reliability and Risk Analysis. Springer London. 
London, England. ISBN 978-1-4471-4587-5. 2013.

62



Norwegian University of Science and Technology

APPENDIX

63



Norwegian University of Science and Technology

GRAMMAR OF S2ML+DFE

64



Norwegian University of Science and Technology

Models

Model ::= (DomainDeclaration | ClassDeclaration | BlockDeclaration)*

DomainDeclaration ::=

domain Identifier "{" Identifier ( "," Identifier )* "}"

ClassDeclaration ::=

class Identifier BlockField* end

BlockDeclaration ::=

block Identifier BlockField* end

BlockField ::=

ParameterDeclaration | VariableDeclaration | ObserverDeclaration

| BlockDeclaration | InstanceDeclaration

| ExtendsDirective | EmbedsDirective | ClonesDirective

| EquationDeclaration

65



Norwegian University of Science and Technology

Parameters, variables & observers

ParameterDeclaration ::=

parameter DomainIdentifier Path "=" Expression ";"

VariableDeclaration ::=

DomainIdentifier Path ("," Path )* Attributes? ";"

ObserverDeclaration ::=

observer DomainIdentifier Path "=" Expression ";"

Attributes ::=

"(" Attribute ( "," Attribute )+ ")"

Attribute ::=

Identifier "=" Expression

DomainIdentifier ::=

Boolean | Integer | Real | Identifier

66



Norwegian University of Science and Technology

Equations

EquationDeclaration ::=

assertion Equation*

Equation ::=

Assignment | DoubleAssignment

Assignment ::=

Path ":=" Expression ";"

DoubleAssignment ::=

Path ":=:" Path ";"

67



Norwegian University of Science and Technology

Expressions

Expression ::=

Path

| ArithmeticExpression | ArithmeticBuiltIn | TrigonometricFunction

| BooleanExpression | Inequality

| RandomDeviate

| ConditionalExpression | SpecialBuiltIn

| "(" Expression ")"

ConditionalExpression ::=

if BooleanExpression then Expression else Expression

SpecialBuiltIn ::=

missionTime()

68



Norwegian University of Science and Technology

Arithmetic expressions

ArithmeticExpression ::=

Float

| pi

| ArithmeticExpression ( "+" ArithmeticExpression )+ 

| ArithmeticExpression ( "-" ArithmeticExpression )+

| ArithmeticExpression ( "*" ArithmeticExpression )+

| ArithmeticExpression ( "/" ArithmeticExpression )+

| "-"  ArithmeticExpression

| min "(" ArithmeticExpression ( "," ArithmeticExpression )*  ")"

| max "(" ArithmeticExpression ( "," ArithmeticExpression )* ")"

69



Norwegian University of Science and Technology

Arithmetic built-in functions & trigonometric functions

ArithmeticBuiltIn ::=

| exp "(" ArithmeticExpression ")"

| log "(" ArithmeticExpression ")"

| pow "(" ArithmeticExpression "," ArithmeticExpression ")"

| sqrt "(" ArithmeticExpression ")"

| floor "(" ArithmeticExpression ")"

| ceil "(" ArithmeticExpression ")"

| abs "(" ArithmeticExpression ")"

| mod "(" ArithmeticExpression "," ArithmeticExpression ")"

| Gamma "(" ArithmeticExpression ")"

TrigonometricFunction ::=

| sin "(" ArithmeticExpression ")"

| cos "(" ArithmeticExpression ")"

| tan "(" ArithmeticExpression ")"

| asin "(" ArithmeticExpression ")"

| acos "(" ArithmeticExpression ")"

| atan "(" ArithmeticExpression ")"

70



Norwegian University of Science and Technology

Boolean expressions & inequalities

BooleanExpression ::=

| BooleanExpression ( or BooleanExpression )+

| BooleanExpression ( and BooleanExpression )+

| not BooleanExpression

| count "(" BooleanExpression ( "," BooleanExpression )* ")"

Inequality ::=

| Expression "==" Expression

| Expression "!=" Expression

| ArithmeticExpression "<" ArithmeticExpression

| ArithmeticExpression ">" ArithmeticExpression

| ArithmeticExpression "<=" ArithmeticExpression

| ArithmeticExpression ">=" ArithmeticExpression

71



Norwegian University of Science and Technology

Random deviates

RandomDeviate ::=

uniformDeviate "(" [ArithmeticExpression]2 ")"

| normalDeviate "(" [ArithmeticExpression]2 ")"

| lognormalDeviate "(" [ArithmeticExpression]2 ")"

| triangularDeviate "(" [ArithmeticExpression]3 ")"

| exponentialDeviate "(" ArithmeticExpression ")"

| WeibullDeviate "(“ [ArithmeticExpression]2 ")"

72



Norwegian University of Science and Technology

Directives

InstanceDeclaration ::=

Identifier Identifier ";" # ClassName InstanceName

| Identifier Identifier BlockField* end # idem

ClonesDirective ::=

clones Path as Identifier ";" # BlockPath CloneName

| clones Path as Identifier BlockField* end # idem

ExtendsDirective ::=

extends Identifier ";" # ClassName

EmbedsDirective ::=

embeds Path as Identifier ";" # BlockPath LocalName

| embeds Path as Identifier BlockField* end # idem

73



Norwegian University of Science and Technology

Identifiers, paths, constants & comments

Identifier ::= [a-zA-Z_][a-zA-Z0-9_-]+

Path ::= Identifier ( "." Identifier )*

Integer ::= [0-9]+

Float ::= [+-]? [0-9]+ ("." [0-9]+)? ([eE] [+-]? [0-9]+)?

Comments can be added everywhere in the code.

• Single line comments introduced by //, which comment out the rest of the line.

• Multiline comments which comment out the text between /* and */.

74



Norwegian University of Science and Technology

GRAMMAR OF JANOS COMMAND

75



Norwegian University of Science and Technology

Scripts, commands load and instantiate

Script ::= Command*

Command ::=

CommandLoad

| CommandInstantiate

| CommandSet

| CommandProfile

| CommandCompute

| CommandPrint

CommandLoad ::=

load model fileName

| load script fileName

CommandInstantiate ::=

instantiate model

| flatten model

76



Norwegian University of Science and Technology

Command set

CommandSet ::=

set seed Integer

| set print-mean Boolean

| set print-standard-deviation Boolean

| set print-confidence-range-90 Boolean

| set print-confidence-range-95 Boolean

| set print-confidence-range-99 Boolean

| set print-extrema Boolean

| set print-bins Boolean

| set number-of-bins Integer

| set number-of-tries Integer

| set output String

| set mode (write | append)

77



Norwegian University of Science and Technology

Command compute

CommandCompute ::=

compute observers blockName Option*

Option ::=

mission-times = "[" Real ("," Real)* "]"

| profile "=" Identifier

| output "=" String

| mode "=" (write|append)

78



Norwegian University of Science and Technology

Command print

CommandPrint ::=

CommandPrintModel

| CommandPrintInstantiatedModel

| CommandPrintEnvironment

CommandPrintModel ::=

print model fileName [mode=(append|write)]

CommandPrintInstantiatedModel ::=

print instantiated-model fileName [mode=(append|write)]

CommandPrintEnvironment ::=

print environment fileName [mode=(append|write)]

79



Norwegian University of Science and Technology

Comments

All characters comprised between a # symbol and the end of the line are considered 
as part of a comment.

80



Norwegian University of Science and Technology

KNOWN BUGS

81



Norwegian University of Science and Technology

Known bugs

Bugs fixed in version 1.2.1:

• Error messages

82


