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Lily

On la trouvait plutôt jolie, Lily
Elle arrivait des Somalies, Lily
Dans un bateau plein d’émigrés
Qui venaient tous de leur plein gré
Vider les poubelles à Paris

Elle croyait qu’on était égaux, Lily
Au pays d’Voltaire et d’Hugo, Lily
Mais, pour Debussy, en revanche
Il faut deux noires pour une blanche
Ça fait un sacré distinguo

Elle aimait tant la liberté, Lily
Elle rêvait de fraternité, Lily
Un hôtelier, rue Secrétan
Lui a précisé, en arrivant
Qu’on ne recevait que des Blancs

Elle a déchargé des cageots, Lily
Elle s’est tapée les sales boulots, Lily
Elle crie pour vendre des choux-fleurs
Dans la rue, ses frères de couleur
L’accompagnent au marteau-piqueur

Et quand on l’appelait Blanche-Neige, Lily
Elle se laissait plus prendre au piège, Lily
Elle trouvait ça très amusant
Même s’il fallait serrer les dents
Ils auraient été trop contents

Elle aima un beau blond frisé, Lily
Qui était tout prêt à l’épouser, Lily
Mais, la belle-famille lui dit
"Nous n’sommes pas racistes pour deux sous
Mais on veut pas de ça chez nous"

Elle a essayé l’Amérique, Lily
Ce grand pays démocratique, Lily
Elle aurait pas cru sans le voir
Que la couleur du désespoir
Là-bas, aussi ce fût le noir

Mais, dans un meeting à Memphis, Lily
Elle a vu Angela Davis, Lily
Qui lui dit "viens, ma petite sœur"
"En s’unissant, on a moins peur"
"Des loups qui guettent le trappeur"

Et c’est pour conjurer sa peur, Lily
Qu’elle lève aussi un poing rageur, Lily
Au milieu de tous ces gugus
Qui foutent le feu aux autobus
Interdits aux gens de couleur

Mais, dans ton combat quotidien, Lily
Tu connaîtras un type bien, Lily
Et l’enfant qui naîtra, un jour
Aura la couleur de l’amour
Contre laquelle on ne peut rien

On la trouvait plutôt jolie, Lily
Elle arrivait des Somalies, Lily
Dans un bateau plein d’émigrés
Qui venaient tous de leur plein gré
Vider les poubelles à Paris

Pierre Perret, 1977





Preface

Rational

When designing my course on model-based systems engineering, I faced a challenge: I was
absolutely convinced that a rigorous introduction to the topics was necessary, which should rely
on a formal (textual) language, with a clearly defined syntax and a well established mathematical
semantics. The problem was that such language does not exist, or more exactly that existing ones,
such as Modelica (Fritzson 2015) or AltaRica (Batteux, Prosvirnova, and Rauzy 2019) are both too
complex to serve as the support for an introductory course and not fully adjusted to the needs.

Consequently, I decided thus to design a new one, based on the S2ML+X paradigm (Batteux,
Prosvirnova, and Rauzy 2018; Rauzy and Haskins 2019), i.e. relying on the one hand on a
simple mathematical framework (the X), and on the other hand on the set of object- and prototype-
oriented constructs gathered into S2ML. The problem was thus to find the appropriate mathematical
framework.

With that respect, systems of data-flow equations are probably the simplest one can imagine. It
consists of sets of equations of the form:

v = e

where v is a variable and e is an expression involving constants, other variables and operations
such as the addition, the subtraction. . . This is about all, with the only additional constraint that the
system must be data-flow, i.e. that a variable cannot depend eventually on itself.

Such systems of data-flow equations are of interest in the systems engineering framework
because variables can be used to represent the state of components as well as the flow of matter,
information or energy circulating throughout the network of components.

It started working on this idea and found out soon that it would be very useful and much more
fun to add some randomness both in the expressions defining states and flows. No sooner said than
done! I had with other modeling languages I was working on all what I needed.

Systems of stochastic, data-flow equations were also perfect to introduce Monte-Carlo simula-
tion, an essential tool in engineering. Since its introduction in the late 1940s by Stanislaw Ulam
and John von Neumann, the Monte-Carlo method is actually pervasive in sciences and engineering.
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The main idea behind this method is that the result of a certain calculation is computed based on
repeated random sampling and statistical analysis. This method applies not only to calculations on
stochastic models, but also to calculations on deterministic ones for which there is no analytical
solutions or analytical solutions are too difficult to obtain.

Janos is thus a pedagogical stochastic simulator. Models are systems of data-flow equations
written in the S2ML+DFE domain specific modeling language. It comes as a command interpreter,
making it possible to perform various studies.

I made the choice to develop Janos in Python, for two main reasons. First, developing in
Python is incredibly faster than in more traditional languages such as C++ or Java. Second, Python
is an interpreted language and there are Python environments available on all main operating
systems, Windows, MacOs and Linux. This choice has some drawbacks however. First, it forces
students to install a Python environment on their machines. Well, this is only half a drawback as
I anyway strongly encourage students to learn Python, as a fantastic productivity tool for their
studies, and later for the engineering and scientific work (Rauzy 2020). The second, more serious
drawback is the poor performance of interpreted programs compared to the one of compiled
programs. Janos is probably by orders of magnitude less efficient than available commercial
tools (implementing stochastic simulators). But it is worth to pay this price as Janos has only
pedagogical purposes. Namely, the objective is to familiarize students with Monte-Carlo simulation
and modeling languages.

John von Neumann
Janos is named so in honor of John von Neumann (1903 - 1957). John von Neumann (Hungarian:
Neumann Jànos Lajos) was a Hungarian-American mathematician, physicist and computer scientist.
Von Neumann is generally regarded as the foremost mathematician of his time and said to be “the
last representative of the great mathematicians”; a genius who was comfortable integrating both
pure and applied sciences.

He made major contributions to a number of fields, including mathematics (foundations of
mathematics, functional analysis, ergodic theory, representation theory, operator algebras, geometry,
topology, and numerical analysis), physics (quantum mechanics, hydrodynamics, and quantum
statistical mechanics), economics (game theory), computing (Von Neumann architecture, linear
programming, self-replicating machines, stochastic computing), and statistics.

He was a pioneer of the application of operator theory to quantum mechanics in the development
of functional analysis, and a key figure in the development of game theory and the concepts of
cellular automata, the universal constructor and the digital computer.

Installation of Janos
The current version of Janos is version 1.2.1.

The first thing you have to do to install Janos is to install a Python environment. Python was
conceived in the late 1980s by the dutch developer Guido van Rossum (Rossum 1995). It now
developed by many people, acting under the direction of a steering committee. There are two major
versions of Python: Python 2 and Python 3. Despite of the efforts of the developers of the language,
these two versions are not fully compatible. Janos uses Python 3.

I recommend the Anaconda environment for Python 3.7 or later.

https://www.anaconda.com/download/

On Windows, install Anaconda only for you (not for all users). This will avoid problems when
installing packages.

https://www.anaconda.com/download/
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Figure 1: Python lines to modify to launch a Janos calculation

In addition to Anaconda, it is often convenient to have a good text editor to edit data files and
programs. If you have a PC under Windows, you should download and install the Notepad++ text
editor.

https://notepad-plus-plus.org/download/

Janos comes with Notepad++ syntax highlighting styles.
Once Python installed, to install Janos you just need to decompress the archive “Janos1.2.1.zip”

into a local directory. Source files are the Python file “Janos.py” as well as the directory “src” and
its content.

To run Janos you have to open the file Python file “Janos.py” into your Python environment,
set up the working directory (line 43) and the name of Janos script file (line 44) as shown on
Figure 1, and run it.

The archive contains also:
– A folder doc containing this manual, some presentations and the Notepad++ configuration

files.
– A folder examples containing the correction of all exercises proposed in this manual.

Organization of the book
This book is organized into four chapters and three appendices.

Chapter 1 introduces the conceptual framework of Janos, namely systems of stochastic
equations and Monte-Carlo simulation.

Chapter 2 presents Janos, i.e. its modeling language, S2ML+DFE, and its commands.
Chapter 3 proposes a series of exercises involving the design of deterministic models.
Chapter 4 proposes a series of exercises involving the design of stochastic models.
Appendix A recalls basics about probabilities and statistics. This appendix is actually a copy of

the appendix of the MBRE Book (Rauzy 2022). I added it here for the sake of convenience.
Appendix B gives the EBNF grammar of the language S2ML+DFE.
Finally, Appendix C gives the EBNF grammar of Janos commands.

https://notepad-plus-plus.org/download/




1. Systems of Stochastic Equations

Key Concepts
– Stochastic simulation
– Systems of stochastic equations
– Uncertainty management
– Sensitivity analyses

Since its introduction in the late 1940s by Stanislaw Ulam and John von Neumann, the Monte-
Carlo method is pervasive in sciences and engineering, see e.g. (Metropolis 1987) for historical
notes. The main idea behind this method is that the result of a certain calculation is computed
based on repeated random sampling and doing statistical analysis. This method applies not only to
calculations on stochastic models, but also to calculations on deterministic ones for which there is
no analytical solutions or analytical solutions are too difficult to obtain.

This chapter presents systems of stochastic equations. Systems of stochastic equations are
probably on the simplest mathematical framework on which Monte-Carlo simulation can be applied.
We shall see that a surprisingly large number of engineering problems can nevertheless be solved
using this framework.

1.1 Systems of Stochastic Equations

1.1.1 Syntax

Stochastic expressions are built over a universe C of constants (including typically Boolean
constants, integers, real numbers and symbolic constants), a finite or denumerable set V of
variables, and a finite or denumerable set O of operators (such as Boolean connectives, arithmetic
operators, trigonometric operators. . . ). Among these operators, some does not return always the
same value. Rather, they pick-up a value at (pseudo-)random in a set of constants, according to
certain rules. These operators are called random deviates.

Each variable V of V comes with its set of possible values, called its domain and denoted
dom(V ).
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Each operator o of O comes with its required number of arguments, called its arity and denoted
ar(o), ar(o)≥ 0. It requires also that its arguments are of certain type (Boolean values cannot be
added up). We shall consider, for the sake of simplicity, an operator that can take a varying number
of arguments as a collection of distinct operators, one per possible arity.

Definition 1.1.1 – Stochastic expressions. The set of stochastic expressions is the smallest
set such that:

– Constants of C are stochastic expressions.
– Variables of V are stochastic expressions.
– If o is an operator of O and e1,. . . , ear(o) are stochastic expressions, then o(e1, . . . ,ear(o))

is a stochastic expressions.

The above definition characterizes an abstract syntax for stochastic expressions. In practice
however, arithmetic and Boolean operators are typically written using their usual syntax, e.g.
x+ 3 ∗ y, f and g or not f and h. The concrete syntax of expressions in languages of the
S2ML+X family is given in Appendix B.

As usual, we denote by var(e) the set of variables that occur in the stochastic expression e.

Definition 1.1.2 – Systems of stochastic equations. A system of stochastic equations is a
finite set of assignments in the form:

V1
..= e1
...

Vn
..= en

Where the Vi’s are variables of V and the ei’s are stochastic expressions.
It is required moreover, that each variable is uniquely defined, i.e. there is exactly one

assignment V ..= e for each variable V ∈
⋃n

i=1 var(ei).

We say that a variable V defined by the assignment V ..= e depends on the variable W if either
W ∈ var(e) or there is a variable U ∈ var(e) such that U depends on W .

A system of stochastic equations is data-flow if none of its variables depends on itself. In the
sequel, we shall consider only data-flow systems of stochastic equations.

ImproveSearchEngine

DesignNewTheme ApplyNewTheme

ImproveShoppingCart

TestSite

Figure 1.1: The tasks of a website improvement project together with their precedence constraints

■ Example 1.1 – Website project. Consider a project that consists in improving the website of an
on-line shop. Assume that the project consists of 5 tasks:

– Improving the search engine, which takes about 20 days;
– Design a new theme and apply this new theme to the site, which take respectively about 15
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and 3 days;
– Improve customer’s shopping cart, which takes about 12 days.
– Extensively test the new version of the site, which takes about 5 days.

There are indeed precedence constraints among these tasks:
– The application of the new theme cannot be done until both the new theme has been designed

and the improvements to the customer’s shopping cart have been realized.
– The new version of the website can be tested until the new theme has been applied and the

search engine has been improved.
Figure 1.1 shows the tasks of the project and their precedence constraints.

A quick calculation shows that the project should be completed in about 25 days.
Assume that the expected benefit made by the company in charge of realizing the project for

the on-line shop is 5000 euros. Assume moreover that the penalties this company has to pay is
1000 euros per day of delay the new version of the website it delivers beyond 25 days.

The problem is then to assess the risk that the company takes by accepting the project.
Figure 1.2 shows the system of equations we can write to describe it formally. (for the

sake of clarity, we write this system directly at the S2ML+DFE syntax, which will be described
Chapter 2.1).

It is easy to verify that this system is actually data-flow.
Now, the reader noticed that we wrote that improving the search engine takes about 20 days,

which means that there is some uncertainty in the duration of this tasks as well as on the others.
It is often assumed that duration tasks in projects obeys some triangular (or similar distributions).
Triangular distributions are characterized by three values: a lower bound, an upper bound and a
mode, which is located in between the two bounds and that represents the most probable value (see
Appendix A.2.1 for more details).

Using triangular deviates, which implements triangular distributions, we could for instance
rewrite the definition of variables defining the duration of the tasks as follows.

1 ImproveSearchEngine.duration := triangularDeviate(15, 25, 20);
2 DesignNewTheme.duration := triangularDeviate(12, 20, 15);
3 ApplyNewTheme.duration := triangularDeviate(2, 4, 3);
4 ImproveShoppingCart.duration := triangularDeviate(10, 20, 12);
5 TestSite.duration := triangularDeviate(4, 7, 5);

■

As the reader shall see through the exercises and problems at the end of this chapter, many
properties of systems can be studied by means of such systems of equations.

1.1.2 Semantics

The semantics of stochastic expressions is defined recursively. Each operator o of O which is not
a random deviate is interpreted as a partial function JoK from C ar(o) into C . Random deviates
are also interpreted as partial functions, but they take implicitly an additional parameter, which
typically a real number in the range [0,1]. The additional parameter is used as the (unique) source
of randomness. A random deviate r is thus interpreted as a partial function JoK from C ar(r)× [0,1]
into C .

To get these implicit parameters, we assume given an infinite sequence of numbers in [0,1].
Let zs be such a sequence, then next(zs) denotes the operation consisting in removing the first
number of the sequence and returning it. The calculation of the value of a stochastic expression
may “consume” in this way the first numbers of the sequence.

The semantics of stochastic expressions is defined as follows.
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1 // Individual task description
2 ImproveSearchEngine.completion :=
3 ImproveSearchEngine.start + ImproveSearchEngine.duration;
4 ImproveSearchEngine.duration := 20;
5 DesignNewTheme.completion :=
6 DesignNewTheme.start + DesignNewTheme.duration;
7 DesignNewTheme.duration := 15;
8 ApplyNewTheme.completion :=
9 DesignNewTheme.start + DesignNewTheme.duration;

10 ApplyNewTheme.duration := 3;
11 ImproveShoppingCart.completion :=
12 ImproveShoppingCart.start + ImproveShoppingCart.duration;
13 ImproveShoppingCart.duration := 12;
14 TestSite.completion := TestSite.start + TestSite.duration;
15 TestSite.duration := 5;
16

17 // Project description
18 ImproveSearchEngine.start := 0;
19 DesignNewTheme.start := 0;
20 ImproveShoppingCart.start := 0;
21 ApplyNewTheme.start :=
22 max(DesignNewTheme.completion, ImproveShoppingCart.completion);
23 TestSite.start :=
24 max(ImproveSearchEngine.completion, ApplyNewTheme.completion);
25 projectDuration := ceil(TestSite.completion);
26

27 // Expected profit
28 expectedProfit :=
29 if projectDuration<=25
30 then 5000
31 else 5000 - 1000*(projectDuration - 25);

Figure 1.2: System of equations describing the website project

Definition 1.1.3 – Semantics of stochastic expressions. Let σ be an assignment of the
variables of V and zs be an infinite sequence of real numbers in [0,1]. Then,

– JcKσ ,zs = c, if c is a constant of C .
– JV Kσ ,zs = σ(V ), if V is a variable of V .
– J(o e1 . . . ear(o))Kσ ,zs = JoK

(
Je1Kσ ,zs, . . . ,Jear(o)Kσ ,zs

)
if o is an operator of O but not a

random deviate.
– J(rd e1 . . . ear(rd))Kσ ,zs = JrdK

(
Je1Kσ ,zs, . . . ,Jear(rd)Kσ ,zs,next(zs)

)
if rd is a random devi-

ate of O .

As all systems of stochastic equations we consider are data-flow, there is always a way to order
their equations so that the equation V ..= e comes after the equations defining variables occurring in
e. The semantics of a system of stochastic equations consists is building step by step, i.e. equation
by equation, a variable valuation, once the equations ordered. Systems of stochastic equations are
thus considered as suitably ordered lists of equations.

We denote by [] the empty list of equations and by V ..= e;Λ the list made of the equation V ..= e
followed by the list of equations Λ.

The construction of the variable valuation works as follows.
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Definition 1.1.4 – Semantics of systems of stochastic equations. Let σ be an assignment
of the variables of V and zs be an infinite sequence of real numbers in [0,1]. Then,

– J[]Kσ ,zs = σ .
– JV ..= e;ΛKσ ,zs = JΛKτ,zs, where τ is the variable valuation such that:

τ(W ) =

{
JeKσ ,zs if W =V
σ(W ) otherwise

■ Example 1.2 – Website project (bis). Consider again the system of stochastic equations of
example 1.1. We can reorder its equations as follows to be able to calculate them in order. Here
follows a candidate order.

1 ImproveSearchEngine.duration 10 ImproveShoppingCart.start
2 DesignNewTheme.duration 11 ImproveShoppingCart.completion
3 ApplyNewTheme.duration 12 ApplyNewTheme.start
4 ImproveShoppingCart.duration 13 ApplyNewTheme.completion
5 TestSite.duration 14 TestSite.start
6 ImproveSearchEngine.start 15 TestSite.completion
7 ImproveSearchEngine.completion 16 projectDuration
8 DesignNewTheme.start 17 expectedProfit
9 DesignNewTheme.completion

The calculation of the value of ImproveSearchEngine.duration is performed first. It
involves the random deviate triangularDeviate, which will consumes a number from the infi-
nite sequence. Then, the value of DesignNewTheme.duration is calculated, which consumes
also a number from the infinite sequence. And so on until the calculation of expectedProfit.
■

At this point, two important remarks can be made:
– No matter the initial variable valuation, the final variable valuation will be the same.
– The calculation of the final variable valuation is fully deterministic and can thus be reproduced

at will.
This is well and good, but does not tell us how to calculate probabilistic indicators on variables

of systems of stochastic equations, e.g. their expected value or their distribution. In the above
example, it would be still possible to analyze expressions and to get some manageable analytical
solutions. In the general case, where complex expressions and large number of variables may be
involved, it is impossible, at least in practice, to obtain analytical solutions.

Fortunately, Monte-Carlo simulation provides a practical way to estimate probabilistic indica-
tors.

1.2 Monte-Carlo Simulation
1.2.1 Rational and Principle

In many system operation situations, we face an uncertain environment and nevertheless we have to
make decisions. A priori, this seems impossible: how to make a decision if we do not know what
will happen and what will be the consequences of our decisions?

In many cases however, we have at hand some information about the system under study and
its environment, in form of statistical data resulting from operation feedback. We can use these
data to design stochastic models, i.e. models in which the system evolves at random. Systems of
stochastic equations defined in the previous section are examples of such models.

The randomness in stochastic models is controlled in two ways: first, executions of these models
describe are not purely random, but governed by the statistical data; second, they are reproducible.
In a word, they are pseudo-random executions.
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1 MonteCarloSimulation(model, numberOfExecutions, sequenceOfNumbers):
2 Initialize(model)
3 for i in [1, numberOfExecutions]:
4 Execute(model, sequenceOfNumbers)
5 UpdateIndicators(model)
6 MakeStatisticsOnIndicators(model)

Figure 1.3: Pseudo-code for the Monte-Carlo simulation

It is thus possible to draw a large number of such pseudo-random executions, and to make
statistics on them. This is the basic principle of Monte-Carlo simulation.

This method is widely used in many different areas: from epidemiological studies to financial
markets going through insurances, nuclear safety. . . We shall review thus review its fundamental
constituents and look at some applications.

Assume given a model, written in some modeling language. The experiment performed on the
model consists in some calculations, that we shall call execution of the model in the sequel. We
assume thus given a function Execute in charge of performing the execution. What this function
depends indeed on the modeling language and the experiment at stake. But they key idea is that at
some steps of the execution of the model, Execute consumes values from an infinite sequence
of numbers and make decisions according to these values, just as we have done for systems of
stochastic equations. Two successive executions using the same infinite sequences of numbers
may be totally different because the numbers of the sequence consumed by the first execution can
be different from those consumed by the second one. By running Execute a sufficiently large
number of times, we can make statistics on values taken by the indicators of interest in the different
executions.

The generic Monte-Carlo simulation algorithm is as sketched Figure 1.3.
Monte-Carlo simulation is a quite generic algorithm, which is relatively simple to implement

and works satisfactorily in many situations. However, one must take care at the following issues.
First, one must control where the randomness comes from. If the model aims at analyzing

a phenomenon on which there is an uncertainty, then one must collect, prior to any experiment,
suitable statistical data on the phenomenon. Monte-Carlo simulation is not a magic wand, or to put
more crudely, it is subject to the well known adage: garbage-in, garbage-out.

Second, it is of primary importance to check that the model meets the reality. This is in general
not an easy task. By definition, programs implementing Monte-Carlo simulations are difficult
to debug as they perform much too many calculations for the programmer to follow them “by
hand”. Even if we assume that the program is free of bugs, there are in general also much too
many possible executions (or even groups of similar executions) of the model for the analyst to
check them exhaustively. In the infancy of computerized methods, execution times were the major
cause which prevented the deployment of the method. With the increase of computation power, the
problem of the validation of models becomes the most important one (although execution times are
still an issue).

Third, Monte-Carlo simulation relies on the generation of numbers at random or pseudo-random,
according to some predefined distributions. It is thus of primary importance that the generation
mechanism mimics correctly randomness. This problem has been controversial for many years, but
is now considered as solved satisfactorily, see Appendix A.4.

Fourth, Monte-Carlo simulation provides statistics on indicators. It is thus important to design
significant indicators and to interpret correctly these statistics. In particular, statistics do not give
exact results, but results that are probably correct. The larger the sample, the more accurate the
result, but also the more costly the experiment. It is thus important to find a good trade-off between
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accuracy and computation cost.

1.2.2 Two Uses of Monte-Carlo Simulation
In the context of model-based systems engineering, Monte-Carlo simulation is used for two main
purposes: the direct calculation of performance indicators and sensitivity analyses.

Calculation of performance indicators
The most obvious reason of using Monte-Carlo simulation consists in calculating performance
indicators on a system subject to aleatory uncertainties. Example 1.1 illustrates this usage. Here
follows another one.

■ Example 1.3 – Simple queue. Consider a service with a unique line that serves clients in
the order they arrive. Assume the delay between two successive client arrivals is exponentially
distributed with a mean time between arrival of 3 minutes. Assume moreover that the time to serve
a client varies uniformly between 1 and 4 minutes. The question is whether this service line is
efficient enough, i.e. if the waiting time of clients is not too high.

In this system, there are two sources of aleatory uncertainty: the delay between two successive
arrivals of clients and the service time.

To answer the question, an analytical reasoning may be possible, but a Monte-Carlo can also do
the job, probably at a much lesser cost.

The idea is to design a model to simulate successive arrivals of clients and their service. For
each client i, i = 1,2 . . . we have three dates:

– The date ai at which the client arrives in the system.
– The date si at which the service of the client starts.
– The date di at which the service of the client is completed.
According to the specifications of the problem:
– ai is equal to ai−1 plus a random delay, which is exponentially distributed with a rate 1/3

minutes−1 (posing a0 = 0)
– si is the maximum of ai and di−1 (assuming the service of the client i starts immediately after

the service of the client i−1 is completed and posing d0 = 0).
– di is equal to si plus a random delay, which is uniformly distributed between 1 and 3 minutes.

The waiting time wi of the client i is thus di − si.
The S2ML+DFE code for this example is provided with the Janos distribution.
The following table reports the results of a Monte-Carlo simulation with 10,000 executions on

20 client arrivals (i.e. about 1 hour of operation). In this table wi is the mean value of the waiting
time of the ith client.

client 1 2 3 4 5 6 7 8 9 10
wi 0.0 0.86 1.43 1.89 2.28 2.59 2.86 3.06 3.26 3.44

client 11 12 13 14 15 16 17 18 19 20
wi 3.60 3.76 3.89 4.02 4.17 4.27 4.39 4.47 4.56 4.67

This experiment is sufficient to show the following picture: the waiting time of clients increases,
quickly at the beginning, regurlarly after. It tends to slowly stabilizes around 5 minutes after a
while.

Whether this situation is acceptable or not cannot be told be the model. ■

Sensitivity analyses
The other important use of Monte-Carlo simulation in the context of model-based systems engineer-
ing is the so-called sensitivity analyses. These analyses aim at testing the robustness of decisions
one makes based on performance indicators calculated via models.
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It is in general the case that models involve parameters that are known only up to a certain
uncertainty. E.g. the arrival rate and the lower and upper bounds for the service time of Example 1.3
are most probably known only approximately.

It therefore worth to test whether the decision made would change if the values of these
parameters would change slightly. It is always possible to test the impact of the variation of one
parameter, mutatis mutandis. However, such an approach does make it possible to test the impact of
simultaneous variations of the parameters. When the number of parameters is small, it is possible
to enumerate all possible cases, e.g. an increase of both the arrival rate and the bounds of service
time, an increase of the former and a decrease of the latter. . . When the number of parameters gets
larger, enumerating all of the cases, or even the most significant ones, becomes impossible for the
sake of combinatorial explosion of the number of cases.

A solution consists in defining associating a distribution of values with each parameter, rather
that a unique value, and to perform a Monte-Carlo simulation. This idea is illustrated in the
following example.

■ Example 1.4 – Manchester. Figure 1.4 shows a simplified map of the region of Manchester.
Jane Doe, a talented systems engineer who lives in Rochdale, is offered a new job in Stockport. The
job is interesting but she is a bit worrying about travel times, as she will have to drive from home
to work every morning. She wants thus to determine how long will it take. Distances in miles are
indicated on the map, but how the driving time is related to these distances depends on the traffic,
which is known only up to an uncertainty.

Jane Doe designs first a model to determine the travel from Rochdale to Stockport at the average
speed of say 30 miles per hour, assuming a regular traffic. Her model, provided with the distribution
of Janos, hard codes the Disjkra’s algorithm to find shortest paths in a graph, i.e.

– It defines a travel time between each city linked with a direct road, according to the distance
and the speed.

– It defines the travel time to each city C as the minimum, over the cities P that precede C, of
the travel time to P augmented with the travel time from P to C.

For instance, the travel time to Manchester is the minimum of:
– The travel time to Rochdale (hence 0) augmented with the travel time from Rochdale to

Manchester.
– The travel time to Bury augmented with the travel time from Bury to Manchester.
– The travel time to Oldham augmented with the travel time from Oldham to Manchester.

Using this model, Jane Doe determines that the travel time at an average speed of 30 miles per hour
from Rochdale to Stockport is 62 minutes.

Now, it is a bit arbitrary to set up the average speed to 30 miles per hour. It can be less and it
can more, depending on the traffic, which may be different from one road to the other. She can of
course re-do the calculation for an optimistic one of 35 miles per hour. and a pessimistic average
speed of 20 miles per hour. Doing so, she would obtained 44 and 93 minutes respectively.

These three values are probably not informative enough. In particular, it is quite optimistic to
assume that the traffic will be clear on all the inter-city roads. Jane Doe decides therefore to perform
a sensitivity analysis, assuming that the speed on each inter-city road is uniformly distributed from
20 miles per hour to 35 miles per hour.

Running a Monte-Carlo simulation (over 10000 executions of the models), she obtains the
following results.

– The average travel time is 72 minutes, with a standard-deviation of about 6 minutes.
– In one case out of four, the travel takes between 44 and 68 minutes. In one case out of four, it

takes between 68 and 72 minutes. In one case out of four, it takes between 72 and 76 minutes.
Finally in the last quarter of the cases, it takes from 76 to 89 minutes.
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Figure 1.4: A simplified map of the region of Manchester

This gives her a clear picture of much time she will spend driving every day if she accepts the
position, and probably good reasons to go for the train. ■

1.3 Discussion

1.3.1 How many executions are needed?

The sample size is an important feature of any empirical study in which the goal is to make
inferences about a population from a sample. This applies indeed to Monte-Carlo simulation.
Larger number of executions lead in general to an increased precision when estimating unknown
parameters. The law of large numbers and the central limit theorem are useful mathematical tools to
describe this phenomenon. Namely, by the strong law of large numbers, we now that the estimated
mean of a distribution x tends with a probability 1.0 to its mean µ as n goes to infinity. Moreover,
by the central limit theorem, we can calculate an error factor and a confidence interval, as defined
by equations A.12 and A.13.

These results can be interpreted as follows.
– For a fixed number of executions n, if we want to increase our confidence in the result, i.e. to

reduce α , we need to widen the confidence interval, and vice-versa.
– If we want to increase our confidence in the result without widening the confidence interval

or to narrow down the confidence interval without decreasing our confidence of the result,
we need to increase n.

– However, the improvement is governed by the 1√
n factor: to reduce the width of the confidence

interval by 2, we need 4 times more executions.
Note that, and it is a remarkable fact, the above results do not depend on the size of the

population, i.e. in our case of the number of possible executions. This is what makes polls possible.
With a relatively limited sample, it is possible to get a good picture of the whole population.

In the framework of model-based systems engineering, executions are in general not too
computationally costly as models have a limited size and systems are observed on limited mission-
times. As a rule of thumb, it is thus reasonable not to do less than 10,000 executions. This number
is also sufficient in many cases.

In some cases, the increase in precision for larger sample sizes is minimal, as illustrated by the
following classical example.
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1

1

Figure 1.5: Estimation of π by sampling points in the unit square

■ Example 1.5 – Estimation of of π. Assume we want to estimate the value of π . We can design a
Monte-Carlo simulation to do so.

The idea is as follows. Each execution consists in drawing two numbers x and y uniformly
at random in the range [0,1]. The point (x,y) lies thus somewhere is the unit square. Now there
are two cases: either the point lies in the (quarter of the) unit disk (the region bounded by the unit
circle), i.e. x2 + y2 ≤ 1, or not, as illustrated Figure 1.5.

By the law of large numbers, when the number of points n in the sample tends to infinity,
the proportion k/n of points that lie within the unit tends to the surface of that unit disk, i.e.
1
4(π × r2) = π/4. To get an estimate π of π it suffices thus to take the proportion of points (x,y) in
the sample such that x2 + y2 ≤ 1 and to multiply it by 4.

In theory, this works fine. In practice, here follows the estimate obtained from different size of
samples (by means of a S2ML+DFE model).

n π 95% confidence range
10,000 3.1688 [3.13699,3.20061]
100,000 3.14876 [3.13861,3.15891]

1,000,000 3.14404 [3.14082,3.14725]
10,000,000 3.14136 [3.14035,3.14238]

As the reader can see, the improvement obtained by taking a sample of 10 millions of executions
rather than one 100 times smaller is not very significant, as the result is coarse anyway.

This does not say that the law of large numbers and the central limit theorem do not apply in
this case, just that the convergence rate towards the limit is low. ■

1.3.2 Rare events
It is of primary importance to understand that above considerations apply if the mean of the
distribution is not too low. In case of rare events, the picture is different as we have to consider not
only the error factor, but also the relative error factor, i.e. EFα (x)

x .
Consider that we want to perform a Monte-Carlo simulation to estimate a parameter that is

distributed according to a Bernoulli distribution (see page 61) of parameter p. Then, the variance of
this parameter is p(1− p). We have thus:

EFα (x)
x

=
tασ (x)√

nx

≈ tα ×
√

x(1− x)√
nx2

= tα ×
√

(1− x)
nx

For a fixed n above quantity tends to infinity as p (and thus x) tends to 0.
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To fix ideas, assume that we want the relative error no to exceed a certain ratio 1
τ
. Then, n must

be as follows.

n ≈ (tατ)2 × (1− p)
p

If p is small, then (1−p)
p ≈ 1

p .
Assume we want to consider 95% confidence intervals, i.e. tα ≈ 2, and that we accept a relative

error of 50%, i.e. τ = 2. Then, (tατ)2 ≈ 16. This means that if p = 1.00× 10−4, we need to
perform about 150,000 executions. If we accept only a relative error of 10%, i.e. τ = 10 and
(tατ)2 ≈ 400, we need to perform about 4 millions executions.

If now p = 1.00×10−6, the number of executions to be performed will be respectively 15 and
400 millions executions.

To put things the other way round, if p ≈ 10−k and we perform 100×10k executions, then our
relative error is about 20%, i.e. there are 95% chances that µ lies between 80% x and 120% x.

This explains why Monte-Carlo simulation cannot be applied directly to rare events. Accel-
eration techniques are required. An exposition of these techniques goes beyond the scope of this
book.

1.4 Further Readings
The book by Dubi (Dubi 2000) provides an introduction to applications of the Monte-Carlo method
to systems engineering.

The book by Zio (Zio 2013) gives a snapshot of the use of Monte-Carlo simulation in the
context of reliability engineering.

The book by Robino and Tuffin (Rubino and Tuffin 2009) gives a comprehensive overview of
acceleration techniques for rare event simulation.

Finally, the readers interested by the notion of randomness will probably enjoy Chaitin’s book
(Chaitin 2001).
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Key Concepts
– S2ML+DFE
– Janos

This chapter presents the tool Janos, a pedagogical Monte-Carlo simulator, and its associated
language S2ML+DFE.

S2ML+DFE is one of the simplest modeling language one may imagine, yet it proves useful in
the context of model-based systems engineering. Its underlying mathematical model consists of
systems of data-flow stochastic equations (DFE). On top of this mathematical models, it provides
object- and prototype-oriented constructs to architect models. These constructs are gathered into
S2ML. It makes it possible to check (simple) properties of systems.

Janos comes as a command interpreter, making it possible to perform various studies. This
chapter specifies S2ML+DFE as well as Janos commands to manage models and launch simula-
tions.

The current version of Janos is developed in Python, for pedagogical purposes only. It is
by orders of magnitude less efficient than available academic and commercial tools. Its primary
objective is to familiarize students with Monte-Carlo simulation and modeling languages of the
S2ML+X family.

2.1 The S2ML+DFE Modeling Language

2.1.1 Overview

S2ML+DFE implements all of the constructs of S2ML seen in the chapter “Architecture of Models”
of the MBRE Book (Rauzy 2022). In addition, it implements specific ports and connections. There
are three types of ports in S2ML+DFE:

– Parameters, which are essentially named values. As variables, parameters are defined by
means of equations, however their definition must be deterministic and involve only other
parameters. Their is decided once for all and stays the same in all executions.
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– Variables, which are the “real” ports. The value of variables may vary from one execution to
the other.

– Observers, which are the indicators whose values are reported when doing deterministic
calculations and on which statistics are made when performing Monte-Carlos simulations.

In S2ML+DFE , the distinction between parameters and variables is somehow arbitrary. However,
it is not in other languages of the S2ML+X family. This is the reason why they are kept separated
in S2ML+DFE as well.

There is only one type of connections in S2ML+DFE: namely equations in the form “v ..= E”,
where v is a variable and E is an expression that depends on parameters and other variables. The
set of equations encoded by a S2ML+DFE must be data-flow, i.e. that a variable (or a parameter)
cannot depend eventually on itself.

Two types of calculations can be made with Janos:
– Deterministic calculations that consists in calculating the values of variables and then the

values of observers.
– Monte-Carlo simulations that consists in repeating the above process a number of times, then

in making statistics on the values of observers.
Deterministic calculations are possible even if the model involves random deviates. The latter are
then set to the default values, e.g. l+h

2 for a uniform deviate with lower bound l and upper bound h,
see Appendix A.2 and ?? for more details.

We shall now review modeling constructs that are specific to S2ML+DFE.

2.1.2 Domains
Parameters, variables and observers take their values into domain, which can be either predefined
domains or user defined domains.

Predefined domains are the following.
Boolean The domain with two values false and true.
Integer The set of integers, e.g. 42, -33. . .
Real The set of floating point numbers, e.g. -373.15, 1.23e-6. . .
Symbol The set of all possible symbolic constants, e.g. LOW, XYZ, FAILED_UNDETECTED. . . Although

this is not required by the syntax of the languages, symbolic constants are usually written in
upper case letters.

User defined domain are either enumeration of symbolic constants or range of integers. They
are declared, using the domain directive, at the top block level (like classes). E.g.

1 domain OnOff {ON, OFF}
2 domain Row [1, 8]

2.1.3 Ports
S2ML+DFE defines three types of ports: parameters, variables and observers.

Parameters
Parameters are constant quantities introduced in models for the sake of clarity. They are introduced
by the keyword parameter, have a domain and a value, which can be modified subsequently, e.g.
after instantiation. E.g.

1 parameter Real failureRate = 1.0e-3;

Note that it is possible to define the value of a parameter by an expression that depends itself
on the value of other parameters. E.g.
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1 parameter Real failureRate1 = 1.0e-3;
2 parameter Real failureRate2 = 2.0e-3;
3 parameter Real failureRate = failureRate1 + failureRate2;

However, a parameter cannot depend eventually on itself. It cannot depends neither on variables
or observers.

Variables
Variables are the main category of ports. Variables are declared together with their domain (their
type). E.g.

1 Boolean input, output;
2 OnOff state;

The value of variables is defined by equations (see Section 2.1.4). A variable may depend on
parameters and other variables. It cannot depend eventually on itself nor on observer.

Observers
Observers are typed and calculated like variables. They are the results calculated and printed out
by Janos. They are declared similarly to parameters, but introduced by the keyword observer.
E.g.

1 observer Real production = Unit1.production + U2.production;

Observers can depend on parameters and variables. They cannot depend on other observers.

2.1.4 Connections
Any S2ML+DFE model is eventually equivalent to a set of stochastic equations {v1

..= E1, . . . ,vn
..=

En}, where the vi’s are variables and the Ei’s are stochastic expressions. E.g.

1 C.AM1.output := if C.AM1.state==WORKING then C.AM1.input else false;

Stochastic expressions are built using parameters, variables, constants and operators. Constants
and operators that can be used to write expressions are described Appendix B. They are common to
most, if not all, languages of the S2ML+X family.

For instance, in the above equation, the left-hand variable C.AM1.output depends on the
variables showing up in the right-hand expression, i.e. C.AM1.state and C.AM1.input, and
on the variables these variables depend on, and so on.

The set S of equations represented by a S2ML+DFE model M must obey the following
conditions:

– For each variable v of M, there must be exactly one equation in S whose left member is v.
– S must be data-flow, i.e. that no variable v of M can depend on itself in S.

2.1.5 S2ML constructs
Aside the elements presented in the two previous sub-sections, S2ML+DFE provides all S2ML
constructs presented in Chapter “Architecture of Models” of the MBRE Book (Rauzy 2022):

– Blocks (that are prototypes in the sense of object-oriented theory);
– Classes;
– Composition;
– Cloning (of blocks);
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– Instantiation (of classes);
– Inheritance;
– Paths and aggregation;
– Operators and functions.
Note that attributes are not used in S2ML+DFE.

2.1.6 Application to the case study
To illustrate S2ML+DFE constructs, consider again the website project described in example 1.1.
Figure 2.1 shows a possible S2ML+DFE model for this example.

1 class Task
2 Real start, duration, completion;
3 assertion
4 completion := start + duration;
5 end
6

7 block Website
8 Task ImproveSearchEngine;
9 Task DesignNewTheme;

10 Task ApplyNewTheme;
11 Task ImproveShoppingCart;
12 Task TestSite;
13 Integer projectDuration;
14 assertion
15 ImproveSearchEngine.duration := triangularDeviate(15, 25, 20);
16 DesignNewTheme.duration := triangularDeviate(12, 20, 15);
17 ApplyNewTheme.duration := triangularDeviate(2, 4, 3);
18 ImproveShoppingCart.duration := triangularDeviate(10, 20, 12);
19 TestSite.duration := triangularDeviate(4, 7, 5);
20 ImproveSearchEngine.start := 0;
21 DesignNewTheme.start := 0;
22 ImproveShoppingCart.start := 0;
23 ApplyNewTheme.start :=
24 max(DesignNewTheme.completion, ImproveShoppingCart.completion);
25 TestSite.start :=
26 max(ImproveSearchEngine.completion, ApplyNewTheme.completion);
27 projectDuration := ceil(TestSite.completion);
28 observer Integer ProjectDuration = projectDuration;
29 observer Integer ExpectedProfit =
30 if projectDuration<=25
31 then 5000
32 else 5000 - 1000*(projectDuration - 25);
33 end

Figure 2.1: S2ML+DFE model for the website project

First, a class Task is declared to implement the generic notion of task. A task is essentially
characterized by three real valued variables: its start date start, its duration duration and its
completion date completion. The two former variables are not defined in the class. The value
of start depends actually of the position of the task in the project. The duration is undefined for
the sake of genericity of the class Task. It would have been possible to assume that the duration
of all tasks obeys a triangular distribution and to declared the parameters of this distribution
as. . . parameters. E.g.
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1 class Task
2 parameter Real lowerBound = 0;
3 parameter Real upperBound = 0;
4 parameter Real mode = 0;
5 Real start, duration, completion;
6 assertion
7 duration := triangularDeviate(lowerBound, upperBound, mode);
8 completion := start + duration;
9 end

Then, to set the value of parameters at instantiation. E.g.

1 Task ImproveSearchEngine
2 parameter Real lowerBound = 15;
3 parameter Real upperBound = 25;
4 parameter Real mode = 20;
5 end

The value of completion can be set at task level as it is always defined in the same way.
The model given in Figure 2.1 declares two observers, one for the project duration, the other

one for the expected benefit, assuming these are the two quantities of interest.

2.2 Janos Scripts

2.2.1 Commands and Scripts
Janos comes as a command interpreter. It reads scripts, i.e. sequences of commands, into files
and executes one after the other these commands.

Commands are used to:
– Read and write models into files.
– Instantiate models, i.e. transform them into sets of equations from which calculations can be

performed.
– Set up the various parameters of calculations.
– Launch calculations and print out results into files.
In a script, each command spans normally written over one line. However , if the line contains

a character “\”, then all character starting from that one until the end of the line are ignored and
the line is merged with the next line.

Figure 2.2 shows a typical Janos script, which can be used to assess the model we designed
for our Website project example given in Figure 2.1.

In this script, line 1 is a comment. Comments start with a character “#” and spread until the
end of the line.

The command load model... line 4 loads a model written in the file website.dfe
located in the current working directory. It is also possible to load script, using the option script
instead of the option model.

Although this is not strictly mandatory, S2ML+DFE models are stored in file with the extension
.dfe and Janos scripts into files with the extension .janos. The S2ML+X toolbox distribution
includes highlighting styles for the text editor Notepad++ for each language and for the scripts.

The command flatten line 8 flattens the model, i.e. transforms it into a set of equations
on which calculations can be performed. This step must be performed prior to any calculation.
Commented lines 5 and 9 show how the print out the model as designed and the model as assessed.

Lines 12- 23 contains commands to set up the parameters of the Monte-Carlo simulation. We
shall describe their respective roles below.



22 Chapter 2. Get It Applied with Janos

1 # Script file for the Website project example
2

3 # Loading of the model
4 load model "website.dfe"
5 # print model output="model.dfe"
6

7 # Flattening of the model
8 flatten model
9 # print target-model output="instantiated-model.dfe"

10

11 # Parameters of the stochastic simulation
12 set seed 23456
13 set number-of-tries 10000
14

15 profile set mean profile1 true
16 profile set standard-deviation profile1 true
17 profile set confidence-interval-90 profile1 false
18 profile set confidence-interval-95 profile1 true
19 profile set confidence-interval-99 profile1 false
20 profile set extrema profile1 true
21 profile set quantiles profile1 false
22 profile set distribution profile1 false
23 profile set cumulative-distribution profile1 false
24

25 # Stochastic simulation
26 compute observers Website mission-times=[0] output="website.csv" \
27 mode=write

Figure 2.2: A typical Janos script

Finally, the command compute observers... lines 26 and 27 launches the actual
computation.

The first argument of this command, i.e. the option observers, just recalls that only values
of observers are printed out in the result file. Therefore, if you are interested in a particular value,
you must create the corresponding observer.

The second argument is the name of the top-level block on which the calculation are performed.
In this case, this block is named Website.

The third argument is the list of mission-times at which the calculation must be performed. It
is actually often the case in model-based systems engineering that the quantities to be calculated,
even if they can be computed deterministically, vary through the time. The built-in expression
mission-time() makes it possible these variations into account. It is given successively the
values passed in argument of the command compute, and the calculations are performed for each
of these values. Mission times are given as list of floating point numbers separated with commas and
surrounded with square brackets. In the script of Figure 2.2, the calculation is performed only at time
0. To perform at times 0, 100, 200 and 300, it suffices to pass the argument mission-times=[0,
100, 200, 300]. By default, i.e. if no argument mission-times is given, the calculation
is performed at time 0.

The last two arguments specify respectively the name (actually the path) of the result file and
its opening mode. Result files can be opened either in write mode or in append mode. In
the former, if there existed a file with the given name before the execution of the command, its
the content is erased and replaced by the results of the command. In the latter, the results of the
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command are appended to the file.

2.2.2 Result files
All result files produced by tools of the S2ML+X Toolbox are at the tsv format. The tsv format, also
called csv format, is a textual format that is easy to load into spreadsheet tools such as Microsoft
Excel™.

Each line of the file encodes a row of the spreadsheet. Values (columns) are separated by
tabulation characters.

The result file for the “Website” model is as follows.

1 Model Website
2 Number-of-tries 10000
3 Execution-time 00:00:06.53
4 Observer ProjectDuration
5 Mission-time 0.0
6 Mean Standard-deviation 95% confidence interval Minimum Maximum
7 25.51 1.76 25.47 25.54 19 31
8 Observer ExpectedProfit
9 Mission-time 0.0

10 Mean Standard-deviation 95% confidence interval Minimum Maximum
11 4030.80 1208.89 4007.11 4054.49 -1000 5000

Such an output format makes easy the post-processing of results within your favorite spreadsheet
tool or using Python.

2.2.3 Launching a Monte-Carlo simulation
In order to perform a Monte-Carlo simulation rather than a simple deterministic calculation, it
suffices to set up the option number-of-tries to the number of executions we want to perform.

The simplest script to perform a Monte-Carlo simulation is thus as follows.

1 load model "website.dfe"
2 flatten model
3 set number-of-tries 10000
4 compute observers Main output="result.csv" mode=write

To perform deterministic calculations, or equivalently calculations with default values of
random deviates, it suffices to set the number of tries to 0.

It is possible to perform the simulation at different mission-times using the option mission-times:

1 compute observers Main mission-times=[1000, 2000, 3000] \
2 output="result.csv" mode=write

The Monte-Carlo simulation involves drawing numbers at pseudo-random. As explained in
Appendix A.4, algorithmic random number generators calculate the next value to be generated
from the previous one. It is possible to set the initial value of the sequences, called the seed, via the
command set seed. E.g.

1 set seed 12345

2.2.4 Defining the statistics to be made
The command compute observers perform a Monte-Carlo simulation. It makes statistics on
the values taken by each observer, at each mission time, over the executions. Appendix A.3 recalls
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mathematical definitions of indicators mentioned in this section.
Janos makes it possible to define several mission profiles that describe which indicators should

be calculated. A profile have name and records which indicators should be calculated and which
not. Profiles can be created, cloned, deleted and configured by means of the command profile.

By default, the predefined profile profile1. It is possible to modify this profile. It is also
possible to perform computation with another profile as follows.

1 compute observers Main mission-times=[1000, 2000, 3000] \
2 output="result.csv" mode=write \
3 profile=myProfile

Creation, cloning and deletion
Commands to create a new profile myProfile (or any other name), to clone the profile myProfile
into another profile myOtherProfile, and finally to delete the profile myProfile are as fol-
lows.

1 profile new myProfile
2 profile clone myProfile myOtherProfile
3 profile delete myProfile

Moments
The current version of Janos makes it possible to calculate the following indicators for each
observer and each mission time:

– The expected value, or mean.
– The standard-deviation.
– The 90%-, 95%- and 99%-confidence intervals.
– The extreme, i.e. the minimum and maximum values taken by the observer.
The command profile is used to define which of these indicators should be calculated.

Assume for instance, we want to get the mean, the standard-deviation and the 99% confidence
interval in the profile myProfile. Commands to do so are as follows.

1 profile set mean myProfile true
2 profile set standard-deviation myProfile true
3 profile set confidence-interval-90 myProfile false
4 profile set confidence-interval-95 myProfile false
5 profile set confidence-interval-99 myProfile true
6 profile set extrema myProfile false

Quantiles and distributions
It is also possible to calculate quantiles, the distribution and the cumulative distribution of each
observer at each mission time.

The user must however that this requires storing a lot of data, which may slow down significantly
the process.

For both quantiles and distributions, at most 100 points can be generated.
Commands to set up the calculation of quantiles are as follows.

1 profile set quantiles myProfile true
2 profile set number-of-quantiles 4

These two commands can be given in any order.
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Commands to set the calculation of distribution and cumulative-distribution are as follows.

1 profile set distribution myProfile true
2 profile set cumulative-distribution myProfile true
3 profile set number-of-points 20

It is of course possible to calculate the distribution of the observer without calculating its cumulative
distribution and vice-versa. Note that in both cases, the number of points is set by the same command
and is thus the same for the distribution and the cumulative distribution.
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Key Concepts
– Deterministic Models

This chapter contains a series of exercises aiming at designing deterministic Janos models.

3.1 Simple Models
Exercise 3.1 – Quadratic Equation. This little exercise aims at familiarizing you with the syntax
of S2ML+DFE and of the Janos scripts.

Question 1. Design a class that solves the quadratic equation ax2 +bx+ c = 0. The coefficients
a, b and c will be parameters of your class. The class will have three outputs, i.e. it must
calculate (at least) the value of three variables: numberOfSolutions, solution1 and
solution2, with their obvious meaning.

Question 2. Use the class designed in the previous question to calculate the solutions of the
following equations:

– x2 −4x−5 = 0
– −1

2 x2 − 11
3 x− 7

6 = 0

■

Exercise 3.2 – Stick Game. Alice and Bob play the following game with wooden sticks.
At the beginning of the game, there are twelve sticks on the table. Each player takes in turn 1, 2

or 3 sticks. The player who takes the last stick loses the game. Alice plays first.

Question 1. Enumerate all possible configurations of the game.

Question 2. Use these configurations to design a S2ML+DFE that determines whether Alice has a
winning strategy.
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■

3.2 Advanced Models
Exercise 3.3 – Electric Circuit. Consider the simple electric circuit pictured below.

CS S1 S2

L

Question 1. Design a S2ML+DFE model for this circuit.
Hint: Use Boolean variables to represent whether the current is circulating into the circuit.
You will need two sets of variables: one to represent the circulation from left to right and
another one to represent the circulation from from right to left.

Question 2. Assume that switches are automatically open and closed at the following times. Deter-
mine with your model when the light is on.

Switch/Hour 0:00 7:00 13:00 17:00 23:00
S1 closed closed open closed closed
S2 open closed closed closed open

■

Exercise 3.4 – Attack Tree. Figure 3.1 shows an attack tree. Attack trees have been introduced by
Schneier (Schneier 1999) to model threats against computer systems.

In the attack tree of the figure, one consider two types of attacks: those requiring a special
equipment, and those that do not. Of course, if an attack is possible without special equipment, it is
a fortiori possible with.

Each type of attack has a cost (some attacks are however impossible without a special equip-
ment).

There are three types of nodes in the tree:
– Leaves, which represent basic attacks, may require or not a special equipment and have a

cost.
– “Or” internal nodes (default), which represent the different possibilities to perform an attack.

They may describe also an cost attached to attacks with and without special equipment.
– “And” internal nodes (pictured with an ellipse), which represent how threats can be combined

to perform an attack. They may describe also an cost attached to attacks with and without
special equipment.

Question 1. Design a S2ML+DFE to encode the attack tree of Figure 3.1.

Question 2. Use the model to calculate the minimum cost of an attack with and without special
equipment.

■

Exercise 3.5 – Manifold. Figure 3.2 shows a (simplified) manifold, as one can find in oil and gas
extraction fields.
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Figure 3.1: An attack tree

Question 1. Design S2ML+DFE classes to model wells and valves. Assume that the flow rate of
fluid (mix of oil, gas and water) coming from wells is some real number (represented by a
parameter).

Question 2. Using the classes designed in the previous section, design a S2ML+DFE model
calculating the flow rate of fluid going from the wells to the production facility and to the test
separator, depending on the states of the valves.

Question 3. Test your model using Janos, by representing the following 24 hours schedule on
the configuration of the manifold. In the following table, P stands for production and T for
test. This means that the flow of fluid coming from well 1 is going to the production all the
time but from 7:00 to 8:00 where it is diverted to the test separator.

Switch/Hour 0:00 7:00 8:00 15:00 16:00 23:00 24:00
Well 1 P T P P P P P
Well 2 P P P T P P P
Well 3 P P P P P T P

■

Exercise 3.6 – Order Process. The BMPN diagram (White and Miers 2008) pictured Figure 3.3
represents an ordering process in which three are actors involved: Customer, Accoun-ting
and Shipment. Rounded rectangles represent tasks of the process. Arrows represent precedences
among the tasks (which task follows which other). Circles represent initial and final states. Finally,
diamonds with a plus symbol, called gates, represent sub-processes that can be performed in
parallel.

Durations (in days) of tasks are given in the following table.
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Figure 3.2: A simplified manifold

Task Duration
PrepareOrder 3
CheckOrder 2
ConfirmOrder 5

PrepareShipment 4
AcceptOrder 1

Tasks have thus a starting and a completion dates (that must be calculated).

Question 1. Design S2ML+DFE classes for states, tasks and gates. Be careful: despite they are
graphically represented alike, initial and terminal states have a different semantics. Similarly,
fork and merge gates have a different semantics.

Question 2. Use these classes to design a S2ML+DFE model for the whole BPMN diagram. Use
your model to calculate the total duration of the process.

■

Exercise 3.7 – School. An elementary school delivers classes to pupils from first to fifth grades.
For each grade, there are four classes. The number of girls and boys in each class is the following
table.

Grade/Class A B C D
1st 11/12 13/12 10/14 13/11
2nd 12/12 11/12 11/13 13/10
3rd 11/12 12/11 11/11 14/10
4th 15/9 11/12 10/13 12/12
5th 13/11 11/13 12/12 10/14
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Figure 3.3: The BPMN diagram for the “order” business process

Question 1. Design a S2ML+DFE hierarchical model, using class/instance and prototype/clone
mechanisms, to represent the school and to count the total number of girls, boys and pupils.

Question 2. The school has a total budget of 5000 euros this year for the music classes. Modify
your model so to calculate the budget allocated to each class, given that the budget is allocated
prorata the number of pupils in the class.

Question 3. Each class has its own main teacher. However, some disciplines are taught by special-
ized teachers. Alice, Bob and Carol are in charge of music:

– Alice teaches to all classes A, plus 1st and 2nd grades of class D.
– Bob teaches to all classes B, plus 3rd and 4th grades of class D.
– Carol teaches to all classes C, plus 5th grades of class D.

Extends your model to be able to count the numbers of boys, girls and pupils, Alice, Bob and
Carol are teaching.
Hint: you can use aggregation.

■

Exercise 3.8 – Railway Crossing. The following diagram represents a railway crossing. The train
arrives from the left and goes to the right. When it reaches the detector D1, a signal is sent to the
barriers B1 and B2 which start closing. When it reaches the detector D2, another signal is sent to
the barriers B1 and B2 which start opening.

D1 D2B1

B2

The barriers take 30 seconds to open and to close. For safety reasons, they must be closed one
minute before the train passes. Detectors are located at 1km of the barriers.

Question 1. Design a S2ML+DFE model to represent the above system. Assuming that the train
goes 30km/hour on this portion of tracks, use the model to determine when it reaches the
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barriers, the detector D2 whether safety constraints are obeyed and for how long barriers will
be closed.

Question 2. Determine experimentally (by tries and errors) the maximum speed the train can go
while obeying safety constraints.

■

Exercise 3.9 – Chest Clinic. The diagram pictured Figure 3.4 is an example of Bayesian network
taken from (Lauritzen and Spiegelhalter 1988). It is a simplified version of a network that could be
used to diagnose patients arriving at a clinic.

Each node in the network corresponds to some condition of the patient, for example, VisitToAsia
indicates whether the patient recently visited Asia. Each node has thus a certain probability of
occurrence. This probability is given directly for source nodes, e.g. 0.01 for VisitToAsia.
Otherwise, it is calculated from the in-coming edges.

The edges between any two nodes indicate that there are probability relationships that are known
to exist between the states of those two nodes. Thus, smoking increases the chances of getting lung
cancer and of getting bronchitis. Both lung cancer and bronchitis increase the chances of getting
dyspnea (shortness of breath). Both lung cancer and tuberculosis, but not usually bronchitis, can
cause an abnormal lung x-ray. And so on. Each edge from the node s to the node t comes with the
two conditional probabilities p(t|not s) and p(t|s), in this order.

For nodes t with only one in-coming edge s → t, the calculation of the probability of the node is
thus easy. It is simply p(t) = p0 + p1, where p0 = p(t|not s)× (1− p(s)) and p1 = p(t|s)× p(s).

For nodes t with two in-coming edges s1 → t and s2 → t, the calculation of the probability
of the node goes as follows: p(t) = p10 × p20 + p10 × p21 + p11 × p20 + p11 × p21, where p10 =
p(t|not s1)×(1− p(s1)), p11 = p(t|s1)× p(s1) p20 = p(t|not s2)×(1− p(s2)), and p21 = p(t|s2)×
p(s2).

The objective of the exercise is to create a library of S2ML+DFE classes to implement such
networks and then to use these classes to model the above network.

Question 1. Create a class for edges. The two conditional probabilities p(t|not s) and p(t|s) are
encoded as parameters. Given a input probability p(s), the class updates the two probabilities
p0 = p(t|not s)× (1− p(s)) and p1 = p(t|s)× p(s).

Question 2. Create a class for each type of nodes: source nodes, node with one parent and nodes
with two parents. Theses class must maintain the probability of the node.

Question 3. Use classes defined in the previous question to design a S2ML+DFE model of the
“Chest Clinic” network.

■

Exercise 3.10 – 3-out-of-5. Assume we want to calculate the probability of failure of a 3-out-of-5
system, i.e. a system that works if at least 3 out of its 5 components work, or reciprocally that is
failed if at least 3 out of its 5 components are. We shall name components A, B, C, D and E.

Assume moreover that the five components fail at random and independently according to a
negative exponential distribution of parameter λ = 1.00×10−4, i.e. that the probability pc(t) that
the component c is failed at time t is defined as follows

pc(t)
de f
= 1− e−λ×t

To calculate the probability of failure of the system as a whole, we shall create the binary
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[0.0, 1.0] [0.0, 1.0]
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[0.72, 0.85]

[0.01, 0.79]

Figure 3.4: The “Asia” or “Chest Clinic” Bayesian network

decision diagram pictured Figure 3.5. This diagram encodes the state of the system according to
the state of its components. It reads top-down and is made of two types of nodes:

– Leaves 0 and 1, represented by squares.
– Internal nodes, represented by circles.

Each internal node is labeled with a component has two out-edges: a then out-edge, represented by
a plain line, and a else out-edge, represented by a dashed line. The then out-edge represents the case
where the component is failed, while the else out-edge represents the case where the component is
not failed, i.e. is working.

The leaves 0 and 1 represent thus respectively the cases where the system is working and is
failed.

The probability of each node is calculated bottom-up:
– The probabilities of leaves 0 and 1 are respectively 0.0 and 1.0.
– The probability of an internal node n labeled with the component c and whose then and else

out-edges point respectively to nodes t and e is calculated via the Shannon decomposition:
pn(t) = pc(t)× pt(t)+(1.0− pc(t))× pe(t)

The objective of the exercise is to design a S2ML+DFE model to encode the diagram of
Figure 3.5 and to calculate, from this diagram, the probability of failure of the system at different
mission-times.

Question 1. Design a class to represent components (use the built-in probability distribution
exponentialDistribution).

Question 2. Design a class to represent generic nodes, then derive from this class one class to
represent leaves and another one to represent internal nodes.

Question 3. Encode the diagram of Figure 3.5 into a main block.

Question 4. Using the diagram, calculate the probability of failure of the system at times 0, 1000,
5000 and 10000.

■

Exercise 3.11 – Oil Production Plant. Figure 3.6 shows a oil production plant that consists in
seven units. Gas separated from the well fluid at upstream side is fed to the facility, treated through
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Figure 3.5: The binary decision diagram encoding the state of a 3-out-of-5 system

high pressure separators (HPS-A, HPS-B and HPS-C) and dehydrators (DEH-A and DEH-B). It
is then led to compressors (CMP-A and CMP-B). The maximum production capacity for each unit
is shown on the figure.

Each unit may fail and be repaired. Failures are randomly distributed according to exponen-
tial distributions. Failure rates for high pressure separators, dehydrators and compressors are
respectively 8.91×10−5, 3.11×10−5 and 3.50×10−5 per hour. Repair times are assumed to be
also randomly distributed according to exponential distributions. Repair rates for high pressure
separators, dehydrators and compressors are respectively 2.54×10−3, 3.95×10−3 and 5.14×10−3

per hour.
The probability that a unit is failed at time t is thus described by the following equation.

Q(t)
de f
=

λ

λ +µ
×
(

1.0− e−(λ+µ)×t
)

where λ denotes the failure rate and µ denotes the repair rate of the unit.
Depending on the state of each production unit, the plant can produce at a certain level.
The expected production capacity at time t is thus as follows.

EP(t)
de f
= ∑s ∈ SPs ×Qs(t)

where S stands for the set of global states, Ps stands for the production of the plant in the state s and
Qs(t) stands for the probability that the plant is the state s at time t.

Question 1. Design a generic class to represent units (use the built-in probability distribution
GLMDistribution). Design a derived class for each type of unit. The derived class should
calculate the probability for the unit to produce at its maximum capacity and at the capacity 0
(because it is failed).

Question 2. Design a S2ML+DFE model to calculate the expected production of the plant. This
model should be made of three stations in series: the separation, the dehydration and the
compression station. For each station, you have to determine the possible production levels
of the station and to calculate the probability that the station is in each of these levels. Same
thing at plant level.
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Question 3. Using the model, calculate the expected production of the plant at times 0, 1000, 5000
and 10000.

■
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65% 52%

52%

55%

55%

55%

65%

Figure 3.6: A (very simplified) oil production plant

Exercise 3.12 – Compressor Drive. A compressor drive system, located in Norway, is in charge
of compressing the gas extracted in north sea to send it to the consumers in France and Great
Britain. This huge machine is made of 6 compressor trains working in parallel. Each compressor
train is itself made of a variable speed drive VSD, a motor M, a gear box GB and a compressor C
working in series, as illustrated below.

VSD M GB
C

During winter (6 months), there is an important need of gas, therefore the six trains are working
actually in parallel. During summer (6 other months), only 3 trains are needed. The 3 other trains
are stopped, and one is maintained. The maintenance policy works according to the round robin
principle: On month 1, trains 1, 2 and 3 are stopped and train 1 is maintained. On month 2, trains 2,
3 and 4 are stopped and train 2 is maintained. And so on.

Question 1. Design a S2ML+DFE model for this system that represents which unit is working and
which is not, month by month, over a 5 years period.
Hint: It is a good idea to create a controller that sends the status – working, stopped or
maintained – to each train. Trains are sending in turn this status to its components. Observers
are created on each component to observe the status.

■





4. Stochastic Models

Key Concepts
– Stochastic Models

This chapter contains a series of exercises aiming at designing stochastic Janos models.

4.1 Simple Models
Exercise 4.1 – Assessment of the value of π. The objective of this exercise is to assess the value
of π using Janos.

Question 1. Design a Janos model to assess the value of π according to the principle described
in example ?? and perform a Monte-Carlo simulation for different seeds of the random
number generator and different numbers of with 10,000 and 100,000 executions. Calculate
the distribution for 10 points.

The model we just designed is rather naive. There is room to improve it. For instance, we
can split intervals [0,1] into 2 parts: [0,0.5] and [0.5,1]. Now, we can look independently the four
possible cases:

– x ∈ [0,0.5] and y ∈ [0,0.5],
– x ∈ [0,0.5] and y ∈ [0.5,1],
– x ∈ [0.5,1] and y ∈ [0,0.5],
– x ∈ [0.5,1] and y ∈ [0,0.5].

Question 1. Design a new model according to the above suggestion. Perform a Monte-Carlo
simulation for different seeds of the random number generator and different numbers of tries.
Compare the results and the computation time with those of the naive implementation. Perform
a Monte-Carlo simulation with 10,000 and 100,000 executions. Calculate the distribution for
10 points.

■
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Exercise 4.2 – Cold Redundancy. Consider a system made of two components A and B in
cold redundancy, i.e. B is started when A fails. Assume that both components are subject to
random failures and that these failures are distributed according to Weibull laws of scale parameter
α = 2.0×104 and shape parameter β = 3, i.e. that the probability R(t) that the component is still
working at time t is given by the formula:

R(t) = exp
(
− t

α

)β

To assess the reliability of this system, we can calculate an analytical solution and then apply
this analytical solution and the mission-time t of interest. This works fine for small examples, but is
infeasible when the system is complex.

An alternative solution consists in drawing at random failure dates for components A and B,
summing these failure dates and comparing the result with the mission time. By repeating this
experiment sufficiently many times, we get an estimate of the reliability of the system.

Question 1. Design a S2ML+DFE model according to the above specifications.

Question 2. Calculate the probability of failure of the system at time 0, 730 (1 month), 1460 (2
months), . . . 8760 (1 year).

■

Exercise 4.3 – Assessment of Integrals. Assume we want to assess the value of the following
integral.

F =
∫

π/6

0

cos(x)
cos(x)− sin(x)

dx

For bright students in calculus, this is not a problem. After a few attempts of applying classical
recipes, they will get the analytical result:

F = −1
2

ln

(√
3−1
2

)
+

π

12
≈ 0.7643

A piece of cake.
For the others, which includes the author, this may turn to be a little more tricky.
There is a solution however: just perform a Monte-Carlo simulation. The idea is to draw

uniformly at random sufficiently many numbers between 0 and π/6, to calculate for each of these
numbers x, the value of cos(x)

cos(x)−sin(x) , then to take the mean over the calculated values.

Question 1. Design a S2ML+DFE model according to the above specifications. Use this model to
assess the value of F .
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Question 2. Same question with the following integrals.

X1 =
∫ 1

−1
2x2 +3x+1 dx

X2 =
∫

π/2

0
sinx dx

X3 =
∫ 5

3

∫ 2

1
2x+5y2 dy dx

X4 =
∫ 1

0

∫ 1−x

0
x+ y dy dx

■

Exercise 4.4 – Chi Square. The following distribution, where the xi’s are normally distributed
random variables with mean 0 and standard-deviation 1 are of special interest.

f (x1,x2,x3,x4) =
√

x2
1 + x2

2 + x2
3 + x2

4

Question 1. Design a S2ML+DFE model to study the distribution described above. We are in
particular interested to determine the probability that this sum exceeds 2.5.

■

Exercise 4.5 – Degrading Unit. Consider a unit that goes through 3 successive periods during its
life-time: infancy, regular operation and wear out. The mission time of the unit is 43800 hours (5
years).

The infancy period lasts 1% of the mission time. The wear-out period lasts the last 10% of the
mission-time. The regular operation period lasts the 89% in between the infancy period and the
wear-out period.

The probability of failure of the unit in each period is assumed to be exponentially distributed,
with a failure rate that depends on the period. Moreover, failure rates are not know precisely. They
are assumed to be uniformly distributed:

Period Low rate High rate
Infancy 1.00×10−4 3.00×10−4

Regular operation 1.00×10−7 3.00×10−7

Wear out 1.00×10−5 3.00×10−5

Question 1. Design a S2ML+DFE model and perform a Monte-Carlo simulation to study the
reliability of this unit.

■

Exercise 4.6 – Degradation Process. The state automaton pictured Figure 4.1 represents the
degradation process of a component.

Initially the component is working (state W). It may degrade (transitions d) and go in a first
degraded state (D1). Then it may degrade again and go in state (D1). A third degradation takes it to
the failed state (F).

In any of the states F, D1 and D2 the component can also experience a failure (transitions f)
that takes it directly to the state F.

Question 1. Assuming that time to degradation and failure are both exponentially distributed with,
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Figure 4.1: State automaton of a degradation process

respectively a degradation rate of 1.00× 10−4 and a failure rate of 2.00× 10−5 per hour,
design a S2ML+DFE model to estimate the probability that the component is failed after 1000,
5000 and 10000 hours.

■

Exercise 4.7 – Investments. You are proposed an investment plan which consists in investing
20,000 U (where U is your currency unit) at the beginning of each year during the next 10 years.
You will be served interests at the end of each year, however the interest rate for each year varies
and is known only up to an uncertainty: it is normally distributed with a mean at 2% and a standard
deviation of 1.5% (this means that it may be negative).

Question 1. Design a S2ML+DFE model to study what is your final capital at the end of the 10
years period (given that you will not withdraw the money you have invested before the end of
the period).

Question 2. Calculate a distribution to have a better view of what can happen.

■

4.2 Advanced Models
Exercise 4.8 – Simple Queue. Let us come back on Example 1.3.

Question 1. Design a S2ML+DFE model according to specifications of the example.

Question 2. Calculate the mean waiting time for 20 clients.

■

Exercise 4.9 – Manchester. Let us come back on Example 1.4.

Question 1. Design a S2ML+DFE model according to specifications of the example.

Question 2. Calculate quartiles as in the example.

■

Exercise 4.10 – Metro Line. A metro line goes from station A to station E, through stations B, C
and D (in order). The journey from a station to the next one has a certain duration (measured in
seconds). Similarly, the stop at each station has a certain duration. However, due to the number
of passengers, the metro main be delayed at each station. It has been observed that this delay is
uniformly distributed between two bounds. The schedule of a journey can thus be pictured follows.
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Table 4.1: Metro line: duration of stops and potential delays and each station

Station Stop duration Low delay high delay
A 30 0 30
B 30 0 40
C 30 0 30
D 30 0 10
E 30 0 5

Table 4.2: Metro line: durations of travels between two consecutive stations

Station Duration Delay reduction capacity
A to B 120 10
B to C 90 5
C to D 120 10
D to E 90 5
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Question 1. Design a S2ML+DFE model to assess the journey time and the delay when leaving
station E (use data provided Tables 4.1 and 4.2). Calculate deciles.

Question 2. Assuming now that the driver can accelerate a bit the journey between two stations so
to compensate the delay. Modify your model to take that into account. Calculate deciles.

■

Exercise 4.11 – Driveway. To drive from home to work, Alice has the choice among different
itineraries, basically depending when she gets in and out the parkway (see Figure 4.2). The
travel time on each portion of the road depends heavily on the traffic, which is itself rather
uncertain. Fortunately, some statistics have been made. Using the statistics given Table 4.3, design
a S2ML+DFE model to assess Alice’s (best) travel time to work. ■

Exercise 4.12 – Fire Protection System. Figure 4.3 shows a fire protection system is installed
in a warehouse. It is in charge of extinguishing fire outbreaks. When a fire outbreak (smoke) is
detected, water is pumped in a tank and sprayed over the fire via sprinklers.

The water sprinkling is launched by operators. The detection of fire outbreaks is in charge of
operators or of another system.

The tank and the sprinklers are assumed to be perfectly reliable. Other components may fail and
their failure is assumed to be exponentially distributed, with the failure rates given in the following
table.
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Figure 4.2: Alice’s drive way

Table 4.3: DriveWay: durations of travels

Road Distribution Low High Mode
a triangular 2 4 3
b triangular 3 5 4
c triangular 1 2 1.8
d triangular 3 6 5
e uniform 3 5
f uniform 4 6
g uniform 2 4
h triangular 1 3 2.2
i triangular 2 2.6 2.2

Component Failure rate (per hour)
Electric Source 1.00×10−8

Pump 1 1.00×10−5

Pump 2 1.00×10−5

Valve 2.00×10−8

Question 1. Design a fault tree and implement it as a S2ML+DFE model to assess the reliability of
this system.

Question 2. Design a reliability block diagram and implement it as a S2ML+DFE model to assess
the reliability of this system.

■
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Figure 4.3: A fire protection system
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A. Probability Theory and Statistics

Key Concepts
– Axiomatic of probability theory
– Sample space, event, σ -algebra
– Probability measure
– Sylvester-Poincaré development
– Conditional probabilities, Bayes’s theorem
– Random variable, cumulative distribution function
– Expected value
– Mean, variance, standard deviation
– Laws of large numbers, central limit theorem
– Important probability distributions
– Quantiles
– Random number generators

Part of model-based systems engineering relies on probability theory. This appendix recalls the
main definitions and results of probability theory, gives some important probability distributions
and recalls basic statistics.

A.1 Probability Theory

A.1.1 Axiomatic

As a branch of mathematics, modern probability theory is defined by means of an axiomatic. The
axiomatic of probability theory has been proposed by Kolmogorov (Kolmogorov 1933). It has the
advantage to cover both the discrete and the continuous cases.

Definition A.1.1 – Sample space. A sample space is the set of all the possible outcomes of a
non-deterministic experiment. An experiment is deterministic if it gives always the same result
in the same condition and non-deterministic otherwise.
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In probability theory, the sample space is usualy called Ω.

Definition A.1.2 – Event. An event over a sample space Ω is a subset of Ω. An event gather all
possible outcomes of the experience that fullfil a certain property.

For the probability theory to be well defined, the set A of events should have a particular
mathematical structure, namely it should be a Borel σ -algebra, or σ -algebra for short.

Definition A.1.3 – σ -algebra. Let Ω be a set. A σ -algebra over Ω is a set A ⊆ 2Ω, where 2Ω

denotes the power set, i.e. the set of subsets of A , such that:
A ̸= /0 A is not empty.
∀A ∈ A ,Ω\A ∈ A A is closed by complementation.
If ∀n ∈ N, Bn ∈ A , then

⋃
n∈N Bn ∈ A A is closed by countable union.

The above definition implies that:
– The empty event /0 and the total event Ω belong to A .
– A is closed by countable intersection.
The pair (Ω,A ) is a probabilisable space, i.e. it is possible to define a probability measure on

it.

Definition A.1.4 – Probability measure. Let Ω be a set and A be a σ -algebra over Ω. A
probability measure p is a function from A to the real interval [0,1] such that:

1. ∀A ∈ A , 0 ≤ p(A)≤ 1 (positivity).
2. p(Ω) = 1 (unitary mass).
3. If ∀n ∈ N, An ∈ A and if moreover ∀i, j ∈ N, i ̸= j, Ai ∩A j = /0, then p(

⋃
n∈N An) =

∑n∈N p(An) (additivity).

A.1.2 Additional Definitions and Properties
The above definition induces a number of well-known properties.

Proposition A.1 – Basic properties of probability measures. Let p be a probability measure
over the space (Ω,A ). Then, the following equalities hold for all A,B ∈ A .

p( /0) = 0

p(Ω\A) = 1− p(A)

p(A∪B) = p(A)+ p(B)− p(A∩B)

The above third equality is extensible to finite unions of events via the so-called Sylvester-
Poincaré development.

Proposition A.2 – Sylvester-Poincaré development. Let p be a probability measure over the
space (Ω,A ) and let A1,A2, . . .An ∈ A . Then, the following equality holds.

p

(
n⋃

i=1

Ai

)
=

n

∑
k=1

(
(−1)k−1

∑
1≤i1<i2<...<in≤n

p(Ai1 ∩ . . .∩Aik)

)

The notion of independence plays an important role in probabilistic risk analysis. It is defined
as follows.

Definition A.1.5 – Independent events. Let p be a probability measure over the space (Ω,A )
and let A,B ∈ A . Then, A and B are independent if p(A∩B) = p(A)× p(B).

The notion of conditional probability captures the idea of measuring the probability of occur-
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rence of an event, given that another event occurred

Definition A.1.6 – Conditional probability. Let p be a probability measure over the space
(Ω,A ) and let A,B ∈ A such that p(B) ̸= 0. The conditional probability of A given B, denoted
as p(A | B), is defined as follows.

p(A | B)
de f
=

p(A∩B)
p(B)

It follows immediately from the definitions that if A and B are independent events, the following
equality holds.

p(A | B) = p(A) (A.1)

We shall conclude this section by the very useful Bayes’s theorem, also called theorem about
the probability of causes.

Theorem A.3 – Bayes’s theorem. Let p be a probability measure over the space (Ω,A ) and
let A,B ∈ A . Then the following equality holds.

p(A | B) =
p(B | A)× p(A)

p(B)

A.1.3 Random Variables
Often, some numerical value calculated from the result of a non-deterministic experiment is more
interesting than the experiment itself. These numerical values are called random variables. We
shall introduce here only real-valued random variables, but the notion of random variables applies
to any measurable set.

Definition A.1.7 – Random variable. Let p be a probability measure over the space (Ω,A ). A
(real-valued) random variable X is a function from Ω into R such that:

∀r ∈ R,{ω ∈ Ω : X(ω)≤ r} ∈ A

The cumulative distribution function of a random variable is the probability that this random
variable takes a value less or equal to a certain threshold.

Definition A.1.8 – Cumulative distribution function. Let p be a probability measure over the
space (Ω,A ) and let X be a random variable built over p. The cumulative distribution function
of X is the function FX from R into [0,1] defined as follows (for all r ∈ R).

FX(r)
de f
= p({ω ∈ Ω : X(ω)≤ r})

Intuitively, the expected value a random variable X , also called the expectation of X , is the
long-run average value of repetitions of the same experiment X represents.

In the finite or denumerable case, this is formalized as follows.

Definition A.1.9 – Expected value (finite or denumerable case). Let X be a random variable
with a countable set of finite outcomes x1, x2, . . . , occurring with probabilities p1, p2, . . . ,
respectively, such that the infinite sum ∑

∞
i=1 |xi| pi converges. The expected value of X , denoted
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E[X ], is defined as following series.

E(X)
de f
=

∞

∑
i=1

xi × pi

In the infinite uncoutable case, the formal definition is as follows.

Definition A.1.10 – Expected value (uncountable case). Let X be a random variable whose
cumulative distribution function admits a density f (x), then the expected value of X is defined
as the following Lebesgue integral.

E(X)
de f
=

∫
R

x f (x)dx

Here follows a basic property of expected value.

Proposition A.4 – Basic property of expected value. Let X and Y be two random variables
and c ∈ R be a constant. Then,

E[X +Y ] = E[X ]+E[Y ]

E[cX ] = cE[X ]

It is often of interest to know how closely a distribution is packed around its expected value.
The variance provides such a measure.

Definition A.1.11 – Variance. Let X be a random variable. The variance of X , denoted Var(X),
is the expectation of the squared deviation of X from its expected value.

Var(X)
de f
= E

[
(X −E[X ])2]

The standard deviation has a more direct interpretation than the variance because it is in the
same units as the random variable. It is defined as follows.

Definition A.1.12 – Standard deviation. Let X be a random variable. The standard-deviation
of a random variable X , denoted σ(X), if the square root of its variance.

σ(X)
de f
=

√
Var(X)

A.1.4 Laws of Large Numbers and Theorem Central Limit
Laws of large numbers
The frequentist interpretation of probability states that if an experiment is repeated a large number
of times under the same conditions and independently, then the relative frequency with which an
event E occurs and the probability of that event E should be approximately the same.

A mathematical formulation of this interpretation is the law of large numbers, which exists
under two forms: the weak law and the strong law.

The weak law of large numbers states that the sample average converges in probability towards
the expected value.

Theorem A.5 – Weak law of large numbers. Let X1, X2. . . a denumerable family of random
variables identically distributed with expected value E(X1) = E(X2) = . . .= µ . Let Xn be the
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average of the sample made of the n first variables, i.e.

Xn
de f
=

1
n
(X1 + . . .+Xn)

Then, for any positive number ε ,

lim
n→∞

Pr
(∣∣Xn −µ

∣∣> ε
)
= 0

The strong law of large numbers states that the sample average converges almost surely to the
expected value.

Theorem A.6 – Strong law of large numbers. Let X1, X2. . . a denumerable family of random
variables identically distributed with expected value E(X1) = E(X2) = . . .= µ . Let Xn be the
average of the sample made of the n first variables, i.e.

Xn
de f
=

1
n
(X1 + . . .+Xn)

Then,

lim
n→∞

Pr
(
Xn = µ

)
= 1

The weak law states that for a specified large n, the average of the sample Xn is likely to be
near µ . Thus, it leaves open the possibility that

∣∣Xn −µ
∣∣> ε happens an infinite number of times,

although at infrequent intervals.

The strong law shows that this almost surely will not occur. In particular, it implies that with
probability 1, for any ε > 0, there exists a n0 such that for all n > n0,

∣∣Xn −µ
∣∣< ε holds.

There are special cases, for which the weak law is verified but not the strong one.

Theorem central limit

The central limit theorem states that, in some situations, when independent random variables
are added, their properly normalized sum tends toward a normal distribution even if the original
variables themselves are not normally distributed. This theorem plays a central role in probability
theory because it implies that probabilistic and statistical methods that work for normal distributions
can be applicable to many problems involving other types of distributions.

Theorem A.7 – Theorem Central Limit. Let X1,. . . , Xn be independent random variables having
a common distribution with expectation µ and variance σ2. Let Xn and Zn defined as follows.

Xn
de f
=

1
n
(X1 + . . .+Xn)

Zn
de f
=

Xn −µ

n/
√

n

Let Φ(z) be the distribution function of the normal law N (0,1), i.e. the normal law of mean 0
and variance 1. Then for all z ∈ R,

lim
n→∞

Pr (Zn ≤ z) = Φ(z)
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Table A.1: Characteristics of the uniform distribution

Probability density function f (x) =


0 if x < a

1
b−a if a ≤ x ≤ b

0 if x > b

Cumulative probability function F(x) =


0 if x < a
x−a
x−b if a ≤ x ≤ b

1 if x > b

Mean 1
2(b−a)

Median 1
2(b−a)

Variance 1
12(b−a)2

0

1

a b

F(x)

Figure A.1: Cumulative distribution function of the uniform distribution

A.2 Some Important Probability Distributions

Many modeling techniques (beyond systems engineering) require the association of probability
distributions with parameters of the model. In practice, there are two ways of defining these
probability distributions:

– The first one consists in using parametric distributions.
– The second one consists in using so-called empirical distributions, i.e. distributions defined

by a set of points between which the value of the function is interpolated.
We shall review them in turn.

A.2.1 Parametric distributions

The following list of parametric distributions gathers only those that are frequently used in the
framework of model-based systems engineering. There exists indeed many others, used in different
contexts.

Uniform distribution

The continuous uniform distribution, or simply uniform distribution, is such that for each member
of the family, all intervals of the same length on the distribution’s support are equally probable. The
support is defined by the two parameters, a and b, a ≤ b, which are its minimum and maximum
values.

Table A.1 gives the characteristics of the uniform distribution.
Figure A.1 shows the shape the cumulative distribution function of the uniform distribution.
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Table A.2: Characteristics of the normal distribution

Probability density function f (x) = 1√
2πσ2 exp

(
− (x−µ)2

2σ2

)
Cumulative probability function F(x) = 1

2

(
1+ erf

(
x−µ

σ
√

2

))
Mean µ

Median µ

Variance σ2

0

1

µ µ+σ

F(x)

Figure A.2: Cumulative distribution function of the normal distribution

Normal distribution
The normal distribution, also called (or Gaussian or Gauss or Gauss-Laplace distribution) is one
of the most convenient to represent phenomena issued from several random sources. It is defined
by means of two parameters: its mean, usually denoted as µ , and its standard-deviation, usually
denoted as σ , (or equivalently its variance σ2). It is denoted N (µ,σ).

Table A.2 gives the characteristics of the normal distribution. In this table, the function erf(x)
is the error function defined as follows.

erf(x)
de f
=

2√
π

∫ x

0
e−t2

dt (A.2)

It gives the probability for a random variable with normal distribution of mean 0 and variance 1/2
to fall in the interval [−x,x].

Figure A.2 shows the shape the cumulative distribution function of the normal distribution.

Lognormal distribution
A lognormal distribution is a continuous probability distribution of a random variable whose
logarithm is normally distributed. Thus, if the random variable X is lognormally distributed,
then Y = lnX has a normal distribution. A lognormal process is the statistical realization of the
multiplicative product of many independent random variables, each of which is positive. As for the
normal distribution, it is characterized by its mean µ and standard-deviation σ .

Table A.3 gives the characteristics of the lognormal distribution.
Figure A.3 shows the shape the cumulative distribution function of the lognormal distribution.

Exponential distribution
The exponential distribution represents typically the life-span of a component without memory,
aging nor wearing (Markovian hypothesis). The probability that the component is working at least
t +d hours knowing that it worked already t hours is the same as the probability that it works d
hours after its entry into service. In other words, the fact that the component worked correctly for t
hours does not change its expected life duration after this delay.
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Table A.3: Characteristics of the lognormal distribution

Probability density function f (x) = 1
xσ

√
2π

exp
(
− (lnx−µ)2

2σ2

)
Cumulative probability function F(x) = 1

2

(
1+ erf

(
lnx−µ

σ
√

2

))
Mean exp

(
µ + σ2

2

)
Median exp(µ)

Variance
(
exp
(
σ2
)
−1
)

exp
(
2µ +σ2

)

0

1

exp(µ)

Figure A.3: Cumulative distribution function of the lognormal distribution

The exponential distribution is defined by means of a single parameter, the transition rate,
usually denoted by λ . This transition rate is the inverse of the mean life expectation.

Table A.4 gives the characteristics of the exponential distribution.
Figure A.4 shows the shape the cumulative distribution function of the exponential distribution.

Weibull distribution
The exponential distribution assumes a constant failure rate over the time. This is not always
realistic because of aging effects: at the beginning of its life the component has a decreasing failure
rate, corresponding to debug (or infant mortality), then for a long while, its failure rate remains
constant, then the wearout period starts where the failure rate increases. This is the so-called bathtub
curve.

This phenomenon is (piece wisely) captured by the Weibull distribution which takes two
parameters: he shape parameter, usually denoted α , and the scale parameter, usually denoted β .

Table A.5 gives the characteristics of the Weibull distribution. In this table, the Γ function is
defined as follows.

Γ(z)
de f
=

∫
∞

0
xz−1e−x dx (A.3)

Figure A.4 shows the shape the cumulative distribution function of the Weibull distribution.

Table A.4: Characteristics of the exponential distribution

Probability density function f (x) = λe−λx

Cumulative probability function F(x) = 1− e−λx

Mean λ−1

Median λ−1 ln2

Variance λ−2



A.2 Some Important Probability Distributions 59

0

1

0 8760

F(x)

Figure A.4: Cumulative distribution function of the exponential distribution

Table A.5: Characteristics of the Weibull distribution

Probability density function f (x) = β

α

( x
α

)β−1 e−(
x
α )

β

Cumulative probability function F(x) = 1− e−(
x
α )

β

Mean αΓ

(
1+ 1

β

)
Median α(ln2)

1
β

Variance α2
(

Γ

(
1+ 2

β

)
−
(

Γ

(
1+ 1

β

))2
)

0

1

0 8760

F(x)

Figure A.5: Cumulative distribution function of the Weibull distribution
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Table A.6: Characteristics of the triangular distribution

Probability density function f (x) =



0 if x < a
2(x−a)

(b−a)(c−a) if a ≤ x < c
2

b−a if x = c
2(b−x)

(b−a)(b−c) if c < x ≤ b

0 if x > b

Cumulative probability function F(x) =



0 if x ≤ a
(x−a)2

(b−a)(c−a) if a < x ≤ c

1− (b−x)2

(b−a)(b−c) if c < x < b

1 if x ≥ b

Mean a+b+c
3

Median

 a+
√

(b−a)(c−a)
2 if c ≥ a+b

2

b−
√

(b−a)(c−a)
2 if c ≤ a+b

2

Variance a2+b2+c2−ab−ac−bc
18 (

0

(c-a)/(b-a)

1

a c b

F(x)

Figure A.6: Cumulative distribution function of the triangular distribution

Triangular distribution
The triangular distribution is a continuous probability distribution with lower limit a, upper limit b
and mode c, where a < b and a ≤ c ≤ b.

The triangular distribution is typically used as a subjective description of a population for which
there is only limited sample data. It is therefore often used in business decision making when not
much is known about the distribution of an outcome (say, only its smallest, largest and most likely
values).

Table A.6 gives the characteristics of the triangular distribution.
Figure A.6 shows the shape the cumulative distribution function of the triangular distribution.

Binomial distribution
The binomial distribution of parameters n and p is a discrete probability distribution. It represents
the number of successes in a series of n independent experiments, each asking a yes–no question.
Each experiment gives the answer yes with the probability p and no with the probability q = 1− p.

The binomial distribution is frequently used to model the number of successes in a sample
of size n drawn with replacement from a population of size N. In case the sample is drawn
without replacement,so the resulting distribution is a hypergeometric distribution. However, if N
much larger than n, the probability to draw twice the same individual is very low, so the binomial
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Table A.7: Characteristics of the binomial distribution

Probability mass function f (k) =
(n

k

)
pk(1− p)n−k

Cumulative probability function F(k) = ∑
⌊k⌋
i=0

(n
i

)
pi(1− p)n−i

Mean np

Median ⌊np⌋ or ⌈np⌉

Variance np(n− p)

0

1

0 10

F(x)

Figure A.7: Cumulative distribution function of the binomial distribution for n = 10 and p = 0.25

distribution is a good approximation of the hypergeometric distribution.
Table A.7 gives the characteristics of the binomial distribution.
Recall that the expression for the binomial is as follows.(

n
k

)
de f
=

n!
k!(n− k)!

(A.4)

Figure A.7 shows the shape the cumulative distribution function of the binomial distribution for
n = 10 and p = 0.25.

The Bernoulli distribution is a special case of the binomial distribution where a single trial is
conducted, i.e. n = 1.

A.2.2 Empirical distributions
Empirical distributions are given by a list of points (x1,y1), . . . , (xn,yn), n ≥ 2, such that x1 <
.. . < xn and, if one considers cumulative distribution functions, y1 ≤ . . .≤ yn. They are typically
obtained via series of observations.

In between points, the value of the function is obtained by interpolation. There are basically
two ways to do this interpolation:

– To consider the distribution as a stepwise distribution, i.e.

F(x) =


y1 if x < x1
yi if xi ≤ x < xi+1
yn if x ≥ xn

(A.5)

– To consider the distribution as a piecewise uniform distribution, i.e.

F(x) =


y1 if x < x1
yi +(yi+1 − yi)

x−xi
xi+1−xi

if xi ≤ x < xi+1

yn if x ≥ xn

(A.6)

■ Example A.1 – Piecewise uniform distribution. Figure A.8 shows a piecewise uniform distri-
bution defined by 4 points: (0,0), (1000, 0.3), (7000, 0.4) and (8760, 0.876). ■

Until recently, empirical distributions were mostly used when it was hard to fit them with any
parametric distribution. For instance, the Kaplan–Meier estimator (Kaplan and Meier 1958), also
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0

1

0 8760

F(x)

Figure A.8: Cumulative distribution function of the piecewise uniform distribution

known as the product limit estimator, is a non-parametric statistic used to estimate the survival
function from lifetime data. In reliability engineering, Kaplan–Meier estimators may be used to
measure the time-to-failure of machine parts. In medical research, they are often used to measure
the fraction of patients living for a certain amount of time after treatment. This situation may
generalize with easy internet communications: there is no more need to store data into a very
compact form (the name of the parametric function and its parameters). Therefore, there is less and
less reasons to spend time and energy in fitting empirical observations with parametric distributions,
not to speak about the arbitrariness of the choice of the parametric distribution.

A.3 Basic Statistics

Essentially two types of indicators can be observed during Monte-Carlo simulations or similar
types of experiments:

– Numerical indicators that are assimilated to real-valued variables.
– Discrete indicators such as Boolean variables or variables taking their values into a small set

of symbolic constants.
The statistics made on these two types of indicators are different. For numerical indicators, one

is mostly interested in how the values of the indicator are distributed. For discrete indicators, one is
mostly interested in the frequency of each value of the indicator.

We shall consider in turn both cases. But before doing so, an important practical remark must
be made: To get significant results, one often needs to consider very large sample, i.e. number of
executions of the model. But in such case, storing all individual values taken by the indicators
would lead to a memory overflow. It would be indeed possible to store values into an external
memory (e.g. hard disk), but accesses to external memories are very slow. Doing so would therefore
slow down dramatically the Monte-Carlo simulation. Consequently, statistics must be made using a
reasonable amount of memory. As for modeling in general, there is here a tradeoff to find between
the accuracy of the description and the ability to perform calculations.

A.3.1 Moments
In statistics, a moment is a specific quantitative measure of the shape of a function. If the function
is a probability distribution, then the first moment is the mean, the second central moment is the
variance, the third standardized moment is the skewness, and the fourth standardized moment is the
kurtosis. The mathematical concept is closely related to the concept of moment in physics.

The n-th moment µn of a real-valued continuous function f of a real variable about a value c is
defined as follows.

µn
de f
=

∫
∞

−∞

(x− c)n f (x)dx (A.7)
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The moment of a function, without further details, refers usually to the above expression with
c = 0.

Note that the n-moment does not necessarily exist (because the above integral may be infinite).
If f is a probability density function, then the value of the integral above is called the n-th

moment of the probability distribution. More generally, if F is a cumulative probability distribution
function of any probability distribution, which may not have a density function, then the n-th
moment of the probability distribution is given by the following integral.

µ
′
n

de f
= E[Xn] =

∫
∞

−∞

xndF(x) (A.8)

where X is a random variable that has this cumulative distribution F , and E is the expectation
operator or mean.

Mean
The mean of a probability distribution is thus the long-run arithmetic average value of a random
variable having that distribution. In this context, it is also known as the expected value (see
Section A.1).

For a data set S = {x1,x2, . . . ,xn}, typically obtained via a Monte-Carlo simulation, the arith-
metic mean, also called the mathematical expectation or average, typically denoted by x (pro-
nounced “x bar”), is the sum of the values divided by the number of values in the data set.

x
de f
=

∑
n
i=1 xi

n
(A.9)

x must be distinguished from the mean µ of the underlying distribution. However, the law of
large numbers ensures that the larger the size of the sample, the more likely it is that its mean is
close to the actual population mean.

As pointed out above, in practice, it may not be possible to store all of the xi’s of the sample.
It is however always possible to calculate their sum “on-the-fly”, i.e. each time a new value is
obtained, it is added to the current sum. Then, when the mean is to be calculated, it suffices to
divide the accumulated sum by the number of values in the sample.

■ Example A.2 – Muffins. A cafeteria manager wants to analyze the number of muffins sold each
day at the cafeteria, in order to better serve clients and avoid losses. To do so, she samples ten days
at random over one month and gets the following results.

day 1 2 3 4 5 6 7 8 9 10
xi 38 11 36 28 10 18 37 12 14 11

To estimate the mean number of muffins sold each day, she can just record, day after day, the
sum of the numbers of muffins sold so far.

day 1 2 3 4 5 6 7 8 9 10
∑xi 38 49 85 113 123 141 178 190 204 215

Then, to get her estimate, she has just to divide the last sum by the number of days: x = 215
10 = 21.5.

Note that the mean is not an integer, while obviously the cafeteria does not sold fractions of muffins.
■
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Variance and standard-deviation
As for the mean, we need to estimate the variance and the standard-deviation from the sample (see
Appendix A for mathematical developments on these two indicators).

Recall that the variance of a random variable X , denoted Var(X), is the expectation of the
squared deviation of X from its mean µ:

Var(X)
de f
= E

[
(X −µ)2]

Intuitively, Var(X) measures how far a set of (random) numbers are spread out from their
average value.

The standard-deviation of a random variable X , denoted σ (X), is the square root of its variance.

σ (X)
de f
=

√
Var(X)

The expression defining the variance can be expanded:

Var(X)
de f
= E

[
(X −E[X ])2]

= E
[
X2 −2XE[X ]+E[X ]2

]
= E[X2]−2E[X ]E[X ]+E[X ]2

= E[X2]−E[X ]2

The naïve algorithm to estimate the empirical variance Var(X) (and the empirical standard
deviation σ (X)) from a sample consists simply in applying the above formula, i.e. in calculating
the mean of the squares and the square of the mean of the values in the sample, and in dividing their
difference by the number of values, i.e. To do so, it suffices to accumulate the sum of the squares of
the values and the sum of the values, as for the mean.

Var(X)
de f
=

∑
n
i=1 x2

i

n
−
(

∑
n
i=1 xi

n

)2

(A.10)

σ (X)
de f
=

√
Var(X) (A.11)

In case the two components of the right hand side of equation A.10 are similar in magnitude,
this algorithm may suffer from biases and numerical instability. Fortunately, there exist better
algorithms to handle these cases. A first correction is provided by the Bessel’s formula, which
consists in multiplying the variance obtained by the naïve algorithm by a factor n

n−1 . This does
not solve however numerical instability. The Welford’s online algorithm makes it possible to get a
good estimate of the variance “on-the-fly” (Welford 1962).

In most of practical cases however, the naïve algorithm is good enough.

■ Example A.3 – Muffins (bis). Consider again our cafeteria example. To estimate the variance
and the standard-deviation of the number of muffins sold, the cafeteria manager can just record,
day after day, the sum of the squares of the numbers of muffins sold (in addition to the sum of the
numbers of muffins sold):

day 1 2 3 4 5 6 7 8 9 10
xi 20 16 30 28 21 19 20 21 18 22

∑xi 20 256 900 784 441 361 400 441 324 215
x2

i 400 121 1296 784 100 324 1369 144 196 484
∑x2

i 400 656 1556 2340 2781 3142 3542 3983 4307 4791
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Then, she can just apply the naïve algorithm: Var(X) = 4791
10 −21.52 = 16.85 and σ (X) = 4.10.

She can notice that, as intuitively expected from the observations, the variance and the standard-
deviation are rather large. ■

Error factors and confidence intervals
A point estimate is a single value given as the estimate of a population parameter of interest, for
example, the mean. In contrast, an interval estimate specifies a range within which the parameter
is estimated to lie Confidence intervals are commonly reported along with point estimates of the
same parameters, to show the reliability of the estimates. A confidence interval comes with a
confidence level, which specifies the probability that the actual value of the parameter lies in the
given interval. For a same sample, the smaller the confidence range, the smaller the confidence level,
and vice-versa, the larger the confidence level the larger the confidence range. Most commonly, the
95% confidence level is used. However, other confidence levels are also used, for example, the 90%
and the 99% confidence levels.

The margin of error or error factor is usually defined as the “radius” (or half the width) of a
confidence interval.

Let x and σ (x) be respectively the observed mean and standard-deviation on a sample of size n.
Then, the error factor EFα (x) corresponding to a confidence level α is defined as follows.

EFα (x)
de f
= tα × σ (x)√

n
(A.12)

The confidence interval CIα (x) is then defined as follows.

CIα (x)
de f
= [x−EFα (x) ,x+EFα (x)] (A.13)

The factor tα is obtained, assuming a normal distribution of the values, by looking at the table
defining the normal law. Typical values chosen for tα are t90% = 1.64, t95% = 1.96 and t99% = 2.58.

■ Example A.4 – Muffins (ter). Consider again the cafeteria example. Based on her previous
calculations, the cafeteria manager can now calculate errors factors and confidence intervals for the
number of muffins sold daily (recall that x̄ = 21.5 and that σ(x) = 11.30).

Confidence level Error factor Confidence interval
90% 2.13 [19.37, 23.63]
95% 2.54 [18.96, 24.04]
99% 3.35 [18.15, 24.85]

The above intervals can be interpreted as follows. There are 90 chances out of 100 that the
mean number of muffins sold daily lies somewhere between 19.37 and 23.63, 95 chances out of
100 that it lies between 18.96 and 24.04, and finally 99 chances out of 100 that it lies between 18.15
and 24.85.

Note, and this is very important to understand, that the parameter that is estimated is the mean
number of muffins daily sold, not the number itself.

Note also that these figures assume a normal distribution for the number of muffins daily sold.
However, a simple look at the data shows two “outliers” at day 3 and 4. It may be the case that,
these two days are the two Wednesday’s of the sample, which turn out to be the day of the weekly
gathering of the Knitting Angels, a gang of grey-haired who use to come at the cafeteria to sip a
coffee and eat pastries. The indicators calculated so far would much more informative by treating
these two days separately. ■
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A.3.2 Distributions and quantiles

For symbolic values, the calculation of the moments is sufficient. For numerical values, one may be
interested in addition to the distribution of values as well as quantiles.

Distributions
In principle, extracting a distribution is rather simple. Let x1,. . . , xn the n numerical values in the
sample. The extraction of the distribution is done in three steps:

1. The minimum and maximum values of the sample are determined (by scanning all xi’s).
2. The interval between the minimum value and the maximum value is split into k sub-intervals

of same size I1, . . . , Ik.
3. By scanning again all xi’s, one determines how many values lie in each interval. The

cumulative distribution function is obtained by summing the number of values in intervals
preceding the considered intervals.

The problem with this approach is indeed that it requires to store all of the values. So in practice,
the minimum and maximum values (and therefore the intervals) are chosen a priori in such way that
all values lie between them and that they are not too far from the actual minimum and maximum.
The number of values in each interval is then maintained “on-the-fly”.

■ Example A.5 – Muffins (quater). Consider again the cafeteria example. The cafeteria manager
may decide a priori that the number of muffins sold daily ranges from 15 to 30, and to split
this interval into four sub-intervals: [15,18], [19,22], [23,26] [27,30] She can then follow on a
day by day basis, the evolution of the number of muffins sold daily falling in each of these four
sub-intervals.

day 1 2 3 4 5 6 7 8 9 10
xi 20 16 30 28 21 19 20 21 18 22

[15,18] 0 1 1 1 1 1 1 1 2 2
[19,22] 1 1 1 1 2 3 4 5 5 6
[23,26] 0 0 0 0 0 0 0 0 0 0
[27,30] 0 0 1 2 21 2 2 2 2 2

This distribution is quite informative: it shows that most of the days, the number of muffins
sold lies in the second sub-interval, i.e. between 19 and 22. It shows also that there are two outliers,
lying in the fourth sub-interval. The fact that they are “exceptional” is confirmed by the emptiness
of the third sub-interval. ■

Quantiles
An alternative approach consists in calculating quantiles.

Quantiles are cut points dividing the range of a probability distribution into successive intervals
with equal probabilities, or dividing the observations in a sample in the same way to estimate their
values. Common quantiles have special names: quartiles (when the probability distribution is
divided in 4), deciles (when it is divided in 10), centiles (when it is divided in 100). The median is
the point such that half of the values in the sample are below and half are above, i.e. the sample is
divided into two sub-intervals.

In principle, estimating quantiles is rather simple. Let x1,. . . , xn the n numerical values in the
sample. The extraction of quantiles is done in three steps:

1. The xi’s are sorted in ascendant order.
2. The sorted list of the xi’s is splitted into q sub-list of equal size (where q depends on which

quantiles one wants to obtain).
3. The i-th q-quantile is the highest value in the i-th sorted sub-list.
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Making the above principle to work “on-the-fly”, i.e. without recording all the xi’s is rather
tricky: only approximated values can be obtained. A full presentation of algorithms that perform
such on-the-fly calculation goes beyond the scope of this book. The main idea is to maintain
successive “bins” of equal probabilities. Values accumulated in each bin are considered as random
variables, for which a mean, a standard-deviation as well as extremum values can be calculated
“on-the-fly”.

■ Example A.6 – Muffins (cinque). Consider again the cafeteria example. The cafeteria manager
may decide to calculate quartile. To do so she needs first to sort xi’s. Then to split the sorted list
into 4 sub-lists of about equal size. E.g.

sorted xi 16 18 19 20 20 21 21 22 28 30
quartile 1 2 3 4

The first quartile is thus between 18 and 19, the second one that is the median, between 20 and
21, the third one between 22 and 28, finally the last one is 30. ■

A.4 Random-Number Generators

The Monte-Carlo simulation method relies fully on the generation at random of numbers. This
section gives some hints on how this generation is performed in practice.

A.4.1 Algorithmic generators
A random-number generator is a device that generates a sequence of numbers that cannot be
reasonably predicted better than by a random chance. This definition is somehow circular as it relies
on the concept of random chance, but the intuitive idea is there. A full mathematical treatment of
the subject goes much beyond the scope of this book (see Section 1.4 for reading advices).

Random number generators can be hardware random-number generators, which generate
genuinely random numbers, or pseudo-random number generators, i.e. algorithms which generate
series of numbers which look random, but are actually deterministic. The former are not very
convenient, at least in the context of model-based systems engineering, for they require to connect
computers with such devices. The latter present not only the advantage of being cheaper, but also
that series of numbers generated by the algorithm can be reproduced at will.

It remains to find “good” generation algorithms, i.e. algorithms that mimic as much as possible
“true” randomness, while being not too expensive from a computational view point. Algorithmic
generators can actually suffer from several defects:

– Lack of uniformity of distribution for large quantities of generated numbers;
– Correlation of successive values;
– Poor dimensional distribution of the output sequence;
– The distances between where certain values occur may be distributed differently from those

in a “true” random sequence distribution;
Congruential pseudo-random number generators (attempt to) fulfill the needs. A congruential

pseudo-random number generators is a function f that takes an integer as input (coded onto a finite
number of bits, e.g. 64 bits on modern computers), called the seed, and returns an integer. Given
the initial seed z0, it is thus possible to generate an arbitrary long sequence of numbers: z1 = f (z0),
z2 = f (z1), . . .

In the second half of the 20th century, the standard pseudo-random number generators were
linear congruential generators, i.e. generators based on functions of the form:

f (z)
de f
= (a× z+ c) mod m
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Note that, because congruential generators work with only a finite number of integers (those
coded by the machine), there necessary exist two indices i and j, i< j, such as zi = z j. Consequently,
at some step, the generator loops. The distance between i and j is called the period of the generator.
For some seeds, the period may be shorter than for some others.

The periodicity of congruential pseudo-random number generators was really an issue for
Monte-Carlo simulations when integers were coded on 32 bits. For large number of tries (e.g. 1
million), they were good chances that the same executions were reproduced (as they started with
the same seed). The problem was known to be inadequate, but better methods were unavailable.

Fortunately, this problem is now solved, due to the generalization of 64 bits machines, and
more importantly to the introduction of techniques based on linear recurrences on the two-element
field. With that respect, the invention of the Mersenne Twister generator in 1997 (Matsumoto and
Nishimura 1998) was a major step forward. This generator (or a successor of thereof) is nowadays
implemented in random number generation librairies of programming languages such as Python,
Matlab, R. . .

A.4.2 Generation according to probability distributions
The algorithmic random generators we presented so far generate numbers ranging from 0 to the
biggest integer maxint representable in one machine word (i.e. on 64 bits, for the most part of
computers we are using today).

However, what we really would like is to generate real numbers, according to some predefined
distribution such as those presented Section A.2.

To get floating point numbers uniformly distributed between 0 and 1, it suffices to divide the
generated xi’s by maxint.

Having a uniform generator between 0 and 1, it is easy to transform it into a generator according
to most of the distributions we have seen so far: for parametric distributions with an invertible
cumulative distribution function, it suffices to generate a number z between 0 and 1, and then to
take x = F−1(z). This works fine for uniform, exponential, Weibull and triangular distributions.
The same idea applies also to empirical distributions.

The situation is more complex when considering normal (and thus lognormal) distributions, as
there is no easily calculable inverse function. Fortunately, there exist relatively simple methods to
generate a normal distribution from an uniform distribution, e.g. the Box-Muller method (Box and
Muller 1958).

Note again that the above mentioned librairies of programming languages such as Python
provide built-ins to generate floating point numbers according to wide variety of parametric
distributions.



B. S2ML+DFE

B.1 Models

1 Model ::= (DomainDeclaration | ClassDeclaration | BlockDeclaration)*
2

3 DomainDeclaration ::=
4 domain Identifier "{" Identifier ( "," Identifier )* "}"
5

6 ClassDeclaration ::=
7 class Identifier BlockField* end
8

9 BlockDeclaration ::=
10 block Identifier BlockField* end
11

12 BlockField ::=
13 ParameterDeclaration | VariableDeclaration | ObserverDeclaration
14 | BlockDeclaration | InstanceDeclaration
15 | ExtendsDirective | EmbedsDirective | ClonesDirective
16 | EquationDeclaration
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B.2 Parameters, Variables and Observers

1 ParameterDeclaration ::=
2 parameter DomainIdentifier Path "=" Expression ";"
3

4 VariableDeclaration ::=
5 DomainIdentifier Path ("," Path )* Attributes? ";"
6

7 ObserverDeclaration ::=
8 observer DomainIdentifier Path "=" Expression ";"
9

10 Attributes ::=
11 "(" Attribute ( "," Attribute )+ ")"
12 Attribute ::=
13 Identifier "=" Expression
14

15 DomainIdentifier ::=
16 Boolean | Integer | Real | Identifier

B.3 Equations

1 EquationDeclaration ::=
2 assertion Equation*
3

4 Equation ::=
5 Assignment | DoubleAssignment
6

7 Assignment ::=
8 Path ":=" Expression ";"
9

10 DoubleAssignment ::=
11 Path ":=:" Path ";"

B.4 Expressions

1 Expression ::=
2 Path
3 | ArithmeticExpression | ArithmeticBuiltIn | TrigonometricFunction
4 | BooleanExpression | Inequality
5 | RandomDeviate
6 | ConditionalExpression | SpecialBuiltIn
7 | "(" Expression ")"
8

9

10 ConditionalExpression ::=
11 if BooleanExpression then Expression else Expression
12

13 SpecialBuiltIn ::=
14 missionTime()
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B.4.1 Arithmetic Expression

1 ArithmeticExpression ::=
2 Float
3 | pi
4 | ArithmeticExpression ( "+" ArithmeticExpression )+
5 | ArithmeticExpression ( "-" ArithmeticExpression )+
6 | ArithmeticExpression ( "*" ArithmeticExpression )+
7 | ArithmeticExpression ( "/" ArithmeticExpression )+
8 | "-" ArithmeticExpression
9 | min "(" ArithmeticExpression ( "," ArithmeticExpression )* ")"

10 | max "(" ArithmeticExpression ( "," ArithmeticExpression )* ")"

B.4.2 Built-Ins

1 ArithmeticBuiltIn ::=
2 | exp "(" ArithmeticExpression ")"
3 | log "(" ArithmeticExpression ")"
4 | pow "(" ArithmeticExpression "," ArithmeticExpression ")"
5 | sqrt "(" ArithmeticExpression ")"
6 | floor "(" ArithmeticExpression ")"
7 | ceil "(" ArithmeticExpression ")"
8 | abs "(" ArithmeticExpression ")"
9 | mod "(" ArithmeticExpression "," ArithmeticExpression ")"

10 | Gamma "(" ArithmeticExpression ")"

B.4.3 Trigonometric Function

1 TrigonometricFunction ::=
2 | sin "(" ArithmeticExpression ")"
3 | cos "(" ArithmeticExpression ")"
4 | tan "(" ArithmeticExpression ")"
5 | asin "(" ArithmeticExpression ")"
6 | acos "(" ArithmeticExpression ")"
7 | atan "(" ArithmeticExpression ")"

B.4.4 Boolean Expressions and Inequalities

1 BooleanExpression ::=
2 | BooleanExpression ( or BooleanExpression )+
3 | BooleanExpression ( and BooleanExpression )+
4 | not BooleanExpression
5 | count "(" BooleanExpression ( "," BooleanExpression )* ")"
6

7 Inequality ::=
8 | Expression "==" Expression
9 | Expression "!=" Expression

10 | ArithmeticExpression "<" ArithmeticExpression
11 | ArithmeticExpression ">" ArithmeticExpression
12 | ArithmeticExpression "<=" ArithmeticExpression
13 | ArithmeticExpression ">=" ArithmeticExpression
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B.4.5 Random Deviates

1 RandomDeviate ::=
2 uniformDeviate "(" [ArithmeticExpression]2 ")"
3 | normalDeviate "(" [ArithmeticExpression]2 ")"
4 | lognormalDeviate "(" [ArithmeticExpression]2 ")"
5 | triangularDeviate "(" [ArithmeticExpression]3 ")"
6 | exponentialDeviate "(" ArithmeticExpression ")"
7 | WeibullDeviate "(" [ArithmeticExpression]2 ")"

B.5 S2ML Directives

1 InstanceDeclaration ::=
2 Identifier Identifier ";" # ClassName InstanceName
3 | Identifier Identifier BlockField* end # idem
4

5 ClonesDirective ::=
6 clones Path as Identifier ";" # BlockPath CloneName
7 | clones Path as Identifier BlockField* end # idem
8

9 ExtendsDirective ::=
10 extends Identifier ";" # ClassName
11

12 EmbedsDirective ::=
13 embeds Path as Identifier ";" # BlockPath LocalName
14 | embeds Path as Identifier BlockField* end # idem

B.6 Identifiers, Paths, Constants and Comments

1 Identifier ::= [a-zA-Z_][a-zA-Z0-9_-]+
2

3 Path ::= Identifier ( "." Identifier )*
4

5 Integer ::= [0-9]+
6

7 Float ::= [+-]? [0-9]+ ("." [0-9]+)? ([eE] [+-]? [0-9]+)?

Comments can be added everywhere in the code.
– Single line comments introduced by “//”, which comment out the rest of the line.
– Multiline comments which comment out the text between “/*” and “*/”.



C. Janos Commands

C.1 Scripts

1 Script ::= Command*
2

3 Command ::=
4 CommandLoad
5 | CommandInstantiate
6 | CommandSet
7 | CommandReset
8 | CommandProfile
9 | CommandCompute

10 | CommandPrint

C.2 Commands

1 CommandLoad ::=
2 load model fileName
3 | load script fileName
4

5 CommandInstantiate ::=
6 instantiate model
7 | flatten model

1 CommandSet ::=
2 set target-block Path
3 | set number-of-tries Integer
4 | set seed Integer
5 | set Identifier Value
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1 CommandReset ::=
2 reset model
3 | reset target-block

1 CommandProfile ::=
2 profile new Identifier
3 | profile clone Identifier Identifier
4 | profile delete Identifier
5 | profile set mean Identifier Boolean
6 | profile set standard-deviation Identifier Boolean
7 | profile set confidence-range-90 Identifier Boolean
8 | profile set confidence-range-95 Identifier Boolean
9 | profile set confidence-range-99 Identifier Boolean

10 | profile set extrema Identifier Boolean
11 | profile set quantiles Identifier Boolean
12 | profile set number-of-quantiles Identifier Integer
13 | profile set distribution Identifier Boolean
14 | profile set cumulative-distribution Identifier Boolean
15 | profile set number-of-points Identifier Integer

1 CommandCompute ::=
2 compute observers blockName Option*
3

4 Option ::=
5 mission-times = "[" Real ("," Real)* "]"
6 | profile "=" Identifier
7 | output "=" String
8 | mode "=" (write|append)

1 CommandPrint ::=
2 CommandPrintModel
3 | CommandPrintTargetModel
4 | CommandPrintEnvironment
5

6 CommandPrintModel ::=
7 print model Option*
8

9 CommandPrintInstantiatedModel ::=
10 print target-model Option*
11

12 CommandPrintEnvironment ::=
13 print environment Option*
14

15 Option ::=
16 output "=" String
17 | mode "=" (write|append)

All characters comprised between a “#” symbol and the end of the line are considered as part
of a comment.
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