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Abstract: Stochastic discrete event systems play a steadily increasing role in
reliability engineering and beyond in systems engineering. Designing stochastic
discrete event systems presents however a well-known difficulty: models are hard
to debug and to validate because of the existence of infinitely many possible
executions, itself due to stochastic delays, which are possibly intertwined with
deterministic ones.

In this article, revisiting ideas introduced in the framework of model-checking
of timed and hybrid systems, we show that it is possible to abstract the time in
stochastic discrete event systems, therefore alleviating considerably debugging
and validation tasks. More specifically, we show that schedules of transitions can
be abstracted into systems of linear inequalities and that abstract and concrete
executions are bisimilar: any concrete execution can be simulated by an abstract
execution and reciprocally any abstract execution corresponds to at least one
concrete execution. Moreover, we propose an efficient algorithm to determine
whether generated systems of linear inequalities have solutions. This algorithm
takes advantage of the very specific form of inequalities.

The result presented in this article represents thus a very important step forward
in quality assurance of stochastic models of complex technical systems. We
illustrate the potential of the proposed approach by means of AltaRica 3.0 models.
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1 Introduction

Stochastic discrete event systems [1, 2] play a steadily increasing role in reliability
engineering and beyond in systems engineering. They encompass a large class of modeling
formalisms such as stochastic Petri nets [3] and stochastic automaton networks [4] as well
as high-level modeling languages such as AltaRica 3.0 [5]. Their interest stands in their5

great expressive power that makes it possible to represent complex behaviors.
Models designed within these formalisms can be assessed by means of various

techniques, including the compilation into lower level modeling formalisms such as fault
trees [6] or Markov chains [7], as well as Monte-Carlo simulation, the swiss-knife of
behavioral modeling, see e.g. [8]. They are however hard to debug and to validate because of10

the infinite number of possible executions, itself due to the infinitely many possible choices
of firing dates for transitions. This is probably the main limiting factor to their full scale
deployment, especially in the context of performance assessment of life-critical systems.
Most of the analysts have experienced this frustration of waiting long minutes, if not hours,
for the results of a Monte-Carlo simulation to discover eventually that these results are15

meaningless because of a mistake somewhere in the model.
In this article, revisiting ideas introduced in the framework of model-checking of timed

and hybrid systems [9, 10], we show that it is possible to abstract the time in stochastic
discrete event systems. Namely, we define an abstraction of transition schedules by means
of systems of linear inequalities. These systems encode the conditions for a transition to20

be enabled at a given step of an execution: the transition is enabled if and only if the
corresponding system has a solution.

We show that abstract and concrete executions are bisimilar in the following sense (see
e.g. [11] for a reference textbook on bisimulations): any concrete execution can be simulated
by a unique abstract execution and reciprocally any abstract execution corresponds to at25
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least one concrete execution. This property is of a great interest because abstract models
can be verified with techniques developed for non-timed discrete event systems, including
model-checking techniques [12, 13].

Even without entering into the model-checking framework, this property makes it
possible to perform abstract interactive simulations, therefore alleviating considerably30

debugging and validation tasks. Interactive simulators allow the analyst to go forth and
back, step by step, in sequences of events, enabling in this way to track modeling errors,
unexpected behaviors and so on. With that respect, they play a similar role as debuggers
like GDB or DDD [14] do for C++ programs. Without the technique we introduce here, the
designers of interactive simulators face a quite unpleasant choice: either ignoring delays,35

which has the major drawback that some non-timed executions have no timed counterpart,
or ask the analyst to enter by hand the delays associated with stochastic transitions, which
is tedious and let the analyst pondering which out of the infinitely many possible delays
are the most suitable for his purpose. The abstract semantics we introduce here solves this
important issue. Although it “only” makes it possible to look for qualitative properties (as40

opposed to probabilistic ones), it proves to be extremely useful to check various scenarios of
interest for the validation of the model, e.g. that firing a given sequence of events is actually
possible and ends up in a state with some expected properties.

The technique presented in this article enters into the general framework of Cousot’s
abstract interpretation [15]. The problem at stake was to make it work for the45

particular case of stochastic discrete event systems. Moreover, algorithmic mechanisms
implementing abstract executions had to be efficient, so to apply on-the-fly model-checking
techniques [16], which are probably the best suited in an engineering context. Solving
systems of linear inequalities requires in the general case linear programming methods such
as the simplex algorithm or more specifically the Fourier-Motzkin elimination [17, 18].50

These methods are quite complex to implement and their execution is resource consuming.
However, as pointed out by Wang, Pettersson and Daniels [9], one can take advantage of
the particular form of the inequalities involved to design an efficient algorithm to check for
the existence of solutions.

The framework presented in this article represents thus a very important step forward in55

quality assurance of stochastic discrete event systems. We illustrate its potential by means of
AltaRica 3.0 models. To the best of authors’ knowledge, AltaRica Wizard, the AltaRica 3.0
integrated modeling environment is the first one to benefit of the techniques presented here.
These techniques could however probably be implemented in other modeling environments
with related objectives, e.g. Figaro [19], GRIF Workshop [20] or PRISM [21].60

The remainder of this article is organized as follows. Section 2 gives a formal definition
of stochastic discrete event systems and discusses their semantics. Section 3 introduces their
abstract semantics in terms of systems of linear inequalities, shows bisimulation theorems
and explains how systems of linear inequalities can be solved efficiently. Section 4 presents
an application of this framework to AltaRica 3.0 models. Finally, Section 5 concludes the65

article and gives some perspectives.

2 Stochastic Discrete Event Systems

In this section, we propose a formal definition of stochastic discrete event systems. This
definition is strongly inspired from the notion of guarded transition systems [22], itself
generalizing formalisms like stochastic Petri nets [3].70
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2.1 Formal Definition

A stochastic discrete event system is a triple 〈S, T, s0〉 where:

• S is a set of states. S may be finite or infinite.

• T is a finite set of transitions. Each transition t of T is a triple 〈g, δ, a〉 where:

– g is a Boolean condition, i.e. a function from S to {0, 1} (representing respectively75

false and true). g is called the guard of the transition. We say that the transition t
is enabled in the state s ∈ S if g(s) = 1.

– δ is a function from S × R+ into CDF−1, where R+ denotes the set of non-
negative real numbers and CDF−1 denotes the set of inverse functions of
cumulative distribution functions. δ is called the delay distribution of the transition.80

We shall explain in details this notion in Section 2.3.

– a is a function from S to S. a is called the action of the transition. Assume that
at a given step i, the system is in the state si and the transition is enabled in that
state. Then, firing the transition is making the system change from state si to state
si+1 = a(si).85

• s0 ∈ S is the initial state of the stochastic discrete event system.

The above definition is quite liberal regarding the definition of states. They can be
virtually anything one wants, ranging from explicitly enumerated states to complex data
structures. It is easy to verify that formalisms such as stochastic Petri nets [3], stochastic
automaton networks [4], guarded transitions systems [22], and queuing systems [23] are90

special cases of stochastic discrete event systems as we defined them.
Note that it is often the case that the action of a transition involves only a small subset

of the variables or data structures representing the state. Firing the transition modifies thus
only these variables or data structures, the other remaining unchanged.

Note also that stochastic discrete event systems can be generated by compiling higher95

level descriptions. This is the principle of the AltaRica 3.0 language developed by the
authors [5]. AltaRica 3.0 results of the combination of guarded transition systems with
S2ML, a versatile and unified set of object-oriented and prototype-oriented constructs to
structure models [24].

Both stochastic discrete event systems and timed and hybrid automata [25] define timed100

interpretations of state automata. In timed automata, state automata are extended with a finite
set of real-valued clocks. During an execution of a timed automaton, all clock values increase
at the same speed. Transitions of the automaton can be guarded (enabled or disabled) by
comparisons of clock values with integers, therefore constraining its possible behaviors.
Furthermore, clocks can be reset. The two classes of models are thus quite close, even105

though they do not emphasize the same things: stochastic behaviors for (stochastic) discrete
event systems, time constraints in the design of controllers of reactive systems for timed
and hybrid automata. More importantly, the objectives of these two classes of models are
significantly different, which leads to very different tooling. Moreover, stochastic discrete
event models daily used in industry tend to be much larger but in some sense simpler than110

timed and hybrid automata models proposed in the literature, which are more academic.
This said, the technique we present in this article to abstract the semantics of discrete
event systems is close to the one introduced by Wang, Pettersson and Daniels to perform
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reachability analyses in timed automaton [9]. The latter is at the core of the model checker
UPPAAL [10], which is probably one of the most mature academic research tools in its115

domain.

2.2 Abstract Syntax

It is convenient to give an abstract syntax to discrete event systems. In the sequel, we
shall denote a transition 〈g, δ, a〉 as g δ−→ a, using Boolean formulas to describe guards and
instructions (in pseudo-code) to describe actions.120

As an illustration, assume that we want to represent the queue for a given service. The
state of this system can be described by a pair (q, s) of integer variables, where q represents
the number of clients in the queue, and s represents the number of clients currently served.

The set S of possible states of the system is thus (theoretically) N× N, i.e. the set of all
possible pairs of integers. This set is indeed infinite. For practical reasons, we may assume125

however that there are never more than 10 clients waiting and that only one client is served
at a time. In this case, S is reduced to product of integer ranges [0, 10]× [0, 1], which is
indeed finite.

The evolution of the system can be represented by means of three transitions:

ta : q < 10
δa−→ q = q + 1

tb : q > 0 ∧ s < 1
δb−→ q = q − 1, s = s+ 1

tc : s > 0
δc−→ s = s− 1,

130

where the transition ta represents the arrival of a client in the queue, the transition tb
represents the beginning of the service of a client, and the transition tc represents the
completion of the service of a client.

The initial state is (0, 0) as there is initially no client in the service.

2.3 Delays135

LetM : 〈S, T, s0〉 be a stochastic discrete event system. The delay distribution δ associated
with a transition t : g

δ−→ a of T associates the inverse of a cumulative distribution function
with each state s ∈ S and each date ϕ ∈ R+.

Intuitively, the delay distributions are used as follows, typically when performing a
Monte-Carlo simulation. If the transition g δ−→ a gets enabled at a date ϕ in a state s, then a140

number z is drawn at pseuso-random uniformly between 0 and 1, the corresponding delay
d is calculated as d = δ(s, ϕ)(z). If the transition remains enabled from the date ϕ to the
date ϕ+ d, then it is fired at ϕ+ d.

In many practical applications, the delay distribution does not depend on the state s,
nor on the date ϕ, i.e. δ(s1, ϕ1) = δ(s2, ϕ2) for all s1, s2 ∈ S and ϕ1, ϕ2 ∈ R+. We shall145

assume this independence in the sequel.
Recall that a cumulative distribution function is a functionφ fromR+ into [0, 1] verifying

the following condition.

∀ϕ1, ϕ2 ∈ R+ ϕ1 ≤ ϕ2 =⇒ φ(ϕ1) ≤ φ(ϕ2) (1)

In practice, the cumulative distribution functions that are used are either parametric150

distributions such as the negative exponential distribution, or empirical distributions
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described by means of a set of points between which the value of the distribution is
interpolated. Kaplan-Meier estimators [26] are typical examples of empirical distributions.

Figure 1 shows several parametric distributions that are widely used: a Dirac distribution
Figure 1a, a uniform distribution Figure 1b, an exponential distribution Figure 1c, and a155

Weibull distribution Figure 1d.

(a) Dirac distribution (b) Uniform distribution

(c) Exponential distribution (d) Weibull distribution

Figure 1: Some widely used distributions

Dirac distributions correspond to deterministic delay distributions. All other delay
distributions are stochastic.

In our example, the transition ta represents the arrival of a client in the queue. The
transition tb represents the beginning of the service of a client. Finally, the transition tc160

represents the completion of the service of a client. As a reasonable approximation, we can
consider that they do not depend on the state of the system, nor on the current time. In the
sequel, we shall assume that the delay δa obeys an exponential distribution, that the delay
δb is null (the client is served as soon as possible), and finally that the delay δc obeys a
uniform distribution between two bounds.165

2.4 Semantics

Let M : 〈S, T, s0〉 be a stochastic discrete event system. M encodes implicitly a set of
possible executions.

If we forget about delays, i.e. if we consider non-timed executions, the set of possible
executions is the smallest set such that:170

• s0 is an (empty) execution.
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• If σ = s0
t1−→ s1 · · ·

tn−1−−−→ sn−1, n ≥ 1, is an execution, then so is σ tn−→ sn, where
sn ∈ S and tn : gn

δn−→ an ∈ T under the conditions that tn verifies condition 1 and
sn verifies condition 2 given below.

Condition 1 (Fired transitions are enabled) The transition tn : gn
δn−→ an fired at step n

was enabled at step n− 1:
gn(sn−1) = 1

Condition 2 (Next state calculation) The state sn at stepn is obtained from the state sn−1
at step n− 1 by applying the action of the fired transition tn : gn

δn−→ an:

sn = an(sn−1)

A timed execution of M is a non-timed execution of M with additional constraints due175

to delays. To define formally timed executions, we need to introduce the notion of schedule.
A schedule ϕ of M is a function from transitions of T to R+ ∪ {∞} that associates a

firing date with each transition t of T such that:

• ϕ(t) ∈ R+ if t is enabled in the current state.

• ϕ(t) =∞ otherwise.180

The set of timed executions of M is the smallest set such that:

• 〈s0, 0, ϕ0〉 is a timed execution, namely the empty execution with the initial schedule
ϕ0 verifying the conditions 3 and 4 given below.

• If σ = 〈s0, 0, ϕ0〉
t1−→ 〈s1, d1, ϕ1〉 · · ·

tn−1−−−→ 〈sn−1, dn−1, ϕn−1〉, n ≥ 1, is a timed

execution, then so is σ
tn−→ 〈sn, dn, ϕn〉, where tn : gn

δn−→ an ∈ T verifies185

condition 1, sn ∈ S verifies condition 2, dn = ϕn−1(tn) is the date of the step n, and
ϕn is a schedule verifying conditions 3-6 given below.

Condition 3 (Scheduled Transitions) The transition t is scheduled at step n ≥ 0 if and
only if it is enabled, i.e. ∀t : g

δ−→ a ∈ T :

g(sn) = 1 =⇒ ϕn(t) ∈ R+

g(sn) = 0 =⇒ ϕn(t) =∞

A consequence of condition 3 is that if a transition t that was scheduled at step n ≥ 0190

is not enabled anymore at step n+ 1, then it is “de-scheduled”, i.e. ϕn+1(t) =∞.

Condition 4 (Newly Enabled Transitions) If the transition t gets enabled at step n ≥ 0,
then it is scheduled, i.e. ∀t : g

δ−→ a ∈ T :

g(sn−1) = 0 ∧ g(sn) = 1 =⇒ ϕn(t) = dn + δn(t)

∧∃z ∈ [0, 1] s.t. δn(t) = δ(sn, ϕn)(z)

Condition 4 applies also:

• To the initial state, i.e. with n = 0 and by posing g(s−1) = 0;195
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• To the transition tn (even though g(sn−1) = 1).

Condition 5 (Earliest Transitions Firing) The transition tn fired at step n ≥ 1 is one of
those with the earliest firing dates at step n− 1, i.e. ∀t ∈ T :

dn = ϕn−1(tn) ≤ ϕn−1(t)

Condition 6 (Previously Enabled Transitions) Finally, if the transition t 6= tn was
enabled at step n− 1 and is still enabled at step n, n ≥ 1, then its schedule stays the same,
i.e. ∀t : g

δ−→ a ∈ T, t 6= tn:

g(sn−1) = 1 ∧ g(sn) = 1 =⇒ ϕn(t) = ϕn−1(t)

As an illustration consider again our queuing example.200

Initially, there is no client in the queue (and indeed no client served), so q0 = 0 and
s0 = 0. In this state, only the transition ta is enabled. A delay δ0(ta) is thus calculated (i.e.
drawn at random according to the delay of ta), e.g. δ0(ta) = 3. The firing date ϕ0(ta) of ta
is defined as ϕ0(ta) = d0 + δ0(ta) = 3 (condition 4). Moreover, ϕ0(tb) = ϕ0(tc) =∞.

As ta is the only enabled transition at step 0, the first event that occurs in the system205

is the firing of this transition (t1 = ta), at the date d1 = ϕ0(ta) = 3. The state at step 1 is
thus aa((q0, s0)) = (q1, s1) = (1, 0) (condition 2).

In this state, both transitions ta and tb are enabled. A new delay is thus calculated for
the transition ta, e.g. δ1(ta) = 4, and the delay δ1(tb) = 0 is calculated for the transition tb
as this transition is deterministic and immediate. We have thus ϕ1(ta) = d1 + δ1(ta) = 7210

and ϕ1(tb) = d1 + δ1(tb) = 3. Indeed, ϕ1(tc) =∞.
At this point, both ta and tb are enabled, but due to the condition 5, only tb can be fired,

as ϕ1(tb) = 3 < ϕ1(ta) = 7. This illustrates the fact that some non-timed executions do
not correspond to any timed executions.

We have thus t2 = tb, d2 = ϕ1(tb) = 3, q2 = 0 and s2 = 1. In this state, both transitions215

ta and tc are enabled. As ta was already enabled in state (q1, s1), its firing date remains
unchanged (condition 6), i.e. ϕ2(ta) = ϕ1(ta). The transition tc was not enabled in state
(q1, s1), so a new delay δ2(tc) is calculated for this transition, e.g. δ2(tc) = 2, and its firing
date is set to ϕ2(tc) = d2 + δ2(tc) = 5

Applying condition 5, we see that as ϕ2(tc) = 5 < ϕ2(ta) = 7, tc must be fired at step220

3.
And so on.
It is worth noticing that the semantics of stochastic discrete event systems is fully

deterministic, except for the calculation of delays and the choice of the transition to fire
when several transitions are enabled at the same time.225

2.5 Interpretation in Terms of Timed Automata

Stochastic discrete event systems can be re-interpreted in terms of (stochastic) timed
automata.

The idea consists in associating a clock c with each transition t : g
δ−→ a ∈ T . c is reset

when t gets logically enabled at stepn ≥ 0. The guard g is extended into g′ : g ∧ c = ϕn(t),230

where ϕn(t) is calculated as in condition 4. This makes the transition t enabled exactly at
the date ϕn(t).
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In other words, stochastic discrete event systems can be seen as stochastic timed
automata in which clocks are implicitly defined. The latter are thus strictly more expressive
than the former. However, this gain in expressiveness comes with a significant price in terms235

of practical difficulty to design, to validate and to maintain models. This is probably the
reason why timed automata remain, as of today, mostly used in academia, conversely to
discrete event systems that are widely used in industry.

2.6 Stochastic Simulations

Stochastic discrete event systems are in general assessed by means of Monte-Carlo240

simulations. The idea is fairly simple: one performs a large number of executions, drawing at
pseudo-random delays of stochastic transitions. Executions are stepwisely expanded until a
certain mission time is reached. Along each execution, the value of some indicators (random
variables) are calculated. Then, one performs statistics on these values, over the different
executions.245

The indicators that may be calculated belong to three categories.
First, indicators regarding transitions (e.g. the number of transitions fired during the

execution, the number of times a given transition has been fired during the execution, or the
first date at which a given transition has been fired during the execution).

Second, indicators relying on predicates over states. A predicate over states is a Boolean250

function over states (e.g. the first date at which a state satisfying the predicate has been
reached during the execution, or the number of times a state satisfying the predicate has
been reached during the execution).

Third, indicators relying on reward over states. A reward over states is a real-valued
function over states (e.g. the minimum, maximum or mean value the reward takes during255

the execution).
The above list is indeed non-exhaustive, although it covers most of the needs. It can be

extended at will.
In our queuing example, we may be interested in:

• The number of times the transition ta is fired, which gives an indicator on the number260

of clients who joined the queue.

• The number of times the transition tc is fired, which gives an indicator on the number
of clients who have been served.

• The maximum and mean values of the reward q, which gives an indicator on the
maximum and mean numbers of waiting clients.265

• The mean value of the reward that takes the value 1 when s = 0 and the value 0
otherwise, which gives an indicator on the time the operator at the counter remains
idle.

3 Abstract Semantics

3.1 Principle270

LetM : 〈S, T, s0〉 be a stochastic discrete event system and let σ = 〈s0, d0, ϕ0〉
t1−→ · · · tn−→

〈sn, dn, ϕn〉, n ≥ 1, be a timed execution of M .
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By conditions 3-6, for each firing date dj , j ≥ n, it exists a step i, 0 ≤ i < j, such that
the transition tj fired at step j has been scheduled at step i, i.e.

dj = ϕi(tj) = di + δi(tj) (2)275

This property can be graphically illustrated by timelines. Figure 2 shows the timeline
describing a timed execution of our queuing system.

𝛿0 𝑡𝑎
𝑑0 𝑑1 𝑑2 𝑑3 𝑑4

𝛿1 𝑡𝑏 𝛿2 𝑡𝑐

𝛿1 𝑡𝑎

𝑑5
𝛿4 𝑡𝑏

𝛿4 𝑡𝑎

𝜑5 𝑡𝑐
𝛿5 𝑡𝑐

𝜑4 𝑡𝑎

Figure 2: A timeline describing an execution of the queuing system.

This timed execution is made of the following steps.

0. Initially, i.e. at date d0 = 0, there is no client in the queue and no client served. The
arrival of a first client (transition ta) is scheduled at date ϕ0(ta) = d0 + δ0(ta).280

1. At date d1 = ϕ0(ta), the first client arrives in the queue. A second client arrival is
scheduled at date ϕ1(ta) = d1 + δ1(ta) and the beginning of the service of the first
client is scheduled at date ϕ1(tb) = d1 + δ1(tb).

2. At date d2 = ϕ1(tb), the first client starts to be served. The completion of the service
of the first client is scheduled at date ϕ2(tc) = d2 + δ2(tc).285

3. At date d3 = ϕ2(tc), the service of the first client is completed.
4. At date d4 = ϕ1(ta), the second client arrives in the queue. The start of the service of

the second client is scheduled at date ϕ4(tb) = d4 + δ4(tb). Moreover, the arrival of a
third client is scheduled at date ϕ4(ta) = d4 + δ4(ta).

5. At date d5 = ϕ4(tb), the second client starts to be served. The completion of the service290

of the second client is scheduled at date ϕ5(tc) = d5 + δ5(tc).

In Figure 2, we represent stochastic transitions (ta and tc) by thick arrows and
deterministic ones (tb) by thin arrows. Moreover, transitions scheduled but not fired yet are
represented with dashed arrows. We shall keep these conventions in the sequel.

If we consider the di’s, theϕi(t)’s and the δi(t)’s as real-valued variables, each execution295

generates three sets of constraints:

• The equalities ϕi(t) = di + δi(t) which reflect the dates at which the transitions are
scheduled and fired. The difference between these two dates being the delay calculated
for the transition.

• The equalities dj = ϕi(tj) that indicates which transition is fired at step j.300

• Finally, the inequalities di−1 ≤ di that reflect the chronological order of steps.

Table 1 summarizes the constraints generated by the execution depicted in Figure 2.
The key idea behind the definition of an abstract semantics for stochastic discrete event

systems is thus to step-wisely generate a system of inequations for each execution, rather
than concrete values for the di’s, the ϕi(t)’s and the δi(t)’s. The abstract execution is valid305

if and only if the corresponding system of inequalities has a solution. This process starts by
defining abstract delays.
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Table 1 Constraints generated by the execution pictured in Figure 2.

Step Date Chronology Schedule
0 d0 = 0 ϕ0(ta) = d0 + δ0(ta)

1 d1 = ϕ0(ta) d0 ≤ d1 ϕ1(ta) = d1 + δ1(ta), ϕ1(tb) = d1 + δ1(tb)

2 d2 = ϕ1(tb) d1 ≤ d2 ϕ2(tc) = d2 + δ2(tc)

3 d3 = ϕ2(tc) d2 ≤ d3
4 d4 = ϕ1(ta) d3 ≤ d4 ϕ4(ta) = d4 + δ4(ta), ϕ4(tb) = d4 + δ4(tb)

5 d5 = ϕ4(tb) d4 ≤ d5 ϕ5(tc) = d5 + δ5(tc)

3.2 Abstract Delays

If we do not put any constraint on the values of the delays, i.e. on variables δi(t)’s, the
systems of linear inequalities are actually trivially satisfiable: it suffices to set δi(t) = 0310

for all steps i and all steps t. However, we do have information on the δi(t)’s as they are
obtained by considering inverse functions of cumulative probability distributions.

The second idea upon which the abstract semantics of stochastic discrete event systems
relies, consists thus in abstracting possible values of delays δi(t) by means of intervals
of R+ ∪ {∞}. Table 2 provides the intervals associated with widely used built-in delay315

functions as well as the corresponding scheduling constraints.

Table 2 Intervals associated with delay functions

Distribution Variation interval Scheduling constraints
Dirac(d) [d, d] ϕi(t) = di + d

exponential(λ) ]0,+∞) ϕi(t) > di
Weibull(α, β) ]0,+∞) ϕi(t) > di
uniform(l, h) ]l, h[ ϕi(t) > di + l, ϕi(t) < di + h

In other words, delays can be split into two categories:

• Deterministic delays, represented by Dirac distributions, which can take a single value
d, d ≥ 0.

• Stochastic delays, represented by all other distributions, which can take any value in320

an interval ]l, h[, 0 < l < h ≤ ∞, where l and h depend on the distribution.

There is however a subtlety that prevents to implement our two ideas directly. It is
explained in the next section 3.3.

3.3 Causality Chains and Chronology Constraints

A stochastic transition can never be fired at exactly the same time as another transition. The325

reason is a well-known argument of the Kolmogorov axiomatic of probability theory [27]:
the Lebesgue’s measure of the probability of such an event is null. This has to be reflected
in systems of inequalities. Namely, there are cases in which inequalities di−1 ≤ di, which
reflect the chronology, must be strict: the date of the firing of the transition ti can be as
close as one wants to the date of the firing of the transition ti−1, but not exactly the same.330
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Figure 3 shows the timelines of nearly identical executions of some stochastic discrete
event systems, involving both deterministic and stochastic transitions. The first execution,
pictured in Figure 3 (a), starts with a stochastic transition A, then continues with
deterministic transitions b, c, d and e. The second execution, pictured in Figure 3 (b), is
similar to the first one, except that now B is a stochastic transition. In the first execution,335

steps 4 and 5 can take place at the same date, i.e. d4 ≤ d5, providing that d1(b) + d2(d) =
d1(c) + d3(e); even though the execution starts with a stochastic transition. In the second
execution, steps 4 and 5 cannot take place at the same date, i.e. d4 < d5, even though both
transitions d and e are deterministic. The reason is that the transition B prevents the two
dates to be equal.340

𝑑0 𝑑1 𝑑2 𝑑3 𝑑4 𝑑5

𝛿0 𝐴 𝛿1 𝑏

𝛿2 𝑑

𝛿1 𝑐 𝛿3 𝑒

(a) Execution 1

𝑑0 𝑑1 𝑑2 𝑑3 𝑑4 𝑑5

𝛿0 𝐴 𝛿1 𝐵

𝛿2 𝑑

𝛿1 𝑐 𝛿3 𝑒

(b) Execution 2

Figure 3: Timelines of two executions involving both deterministic and stochastic
transitions.

To decide about the chronology constraint between dates di−1 and di, we need to
introduce the notion of causality chain. LetM : 〈S, T 〉 be a stochastic discrete event system
and let σ = 〈s0, d0, ϕ0〉

t1−→ · · · tn−→ 〈sn, dn, ϕn〉, n ≥ 1, be a timed execution of M . The
causality chain of the transition tn is the sub-sequence of transitions of σ such that:

〈s0, d0, ϕ0〉
ti1−−→ 〈si1 , di1 = ϕ0(ti1), ϕi1〉

ti2−−→ 〈si2 , di2 = ϕi1(ti2), ϕi2〉 · · ·
tn−→ 〈sn, dn = ϕik(tn), ϕn〉

By construction, the causality chain of the transition tn exists and is unique.
In the execution pictured in Figure 3 (a), the causality chains of transitions d and e are

as follows:

〈s0, d0, ϕ0〉
A−→ 〈s1, d1 = ϕ0(A), ϕ1〉

b−→ 〈s2, d2 = ϕ1(b), ϕ2〉
d−→ 〈s4, d4 = ϕ2(d), ϕ4〉

〈s0, d0, ϕ0〉
A−→ 〈s1, d1 = ϕ0(A), ϕ1〉

c−→ 〈s3, d3 = ϕ1(c), ϕ3〉
e−→ 〈s5, d5 = ϕ3(e), ϕ5〉
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Now, any two causality chains σ1 and σ2 extracted from an execution σ have a largest
common prefix, i.e. can be written as σ1 = πτ1 and σ2 = πτ2, where the suffixes τ1 and τ2
share no transition.

In the above example, the largest common prefix of causality chains of d and e is made345

of the transition A, while their respective suffixes consist of the transitions b, d in one case
and c and e in the other case.

The rule to decide whether the chronology constraint between dates di−1 and di is strict
or not can be stated as follow. Let σi−1 = πτi−1 and σi = πτi be the causality chains of
the transitions ti−1 and ti, where π is their largest common prefix. Then, the chronology350

inequality between di−1 and di is strict if and only if at least one of the suffix sequences
τi−1 and τi involves a stochastic transition.

In our example, the chronology inequality between d4 and d5 is thus not strict in the
first execution (as transitions b, c, d and e are all deterministic), and strict in the second one
(as the transition B is stochastic).355

Now, we can define formally the abstract semantics of stochastic discrete event systems.

3.4 Formal Definition

Let M : 〈S, T, s0〉 be a stochastic discrete event system. M encodes implicitly a set of
possible abstract executions. The set of abstract executions of M is the smallest set such
that:360

• 〈s0,Γ0〉 is an abstract execution, namely the empty execution starting in the initial
state s0 ∈ S with the initial system of inequalities Γ0 containing:

– The equality d0 = 0, and

– The scheduling constraints defined by the condition 7 given below.

• If σ = 〈s0,Γ0〉
t1−→ 〈s1,Γ1〉 · · ·

tn−1−−−→ 〈sn−1,Γn−1〉, n ≥ 1, is an abstract execution,365

then so is σ tn−→ 〈sn,Γn〉, where tn : gn
δn−→ an ∈ T verifies condition 1, sn ∈ S

verifies condition 2, and Γn is obtained by adding to Γn−1 the constraints:

– dn = ϕi(tn), where i is the step at which tn has been scheduled.

– dn−1 < dn or dn−1 ≤ dn according to the rule on causality chains defined in the
previous section.370

– The scheduling constraints defined by the condition 7 given below.

Condition 7 (Abstract Scheduling) If the transition t : g
δ−→ a gets enabled at step n ≥ 0,

then Γn contains the constraints:

• ϕn(t) = dn + d, if δ(sn) is a deterministic delay d.

• ϕn(t) > dn + l andϕn(t) < dn + h, if δ(sn) is a stochastic delay with a lower bound375

l and an upper bound h.

An abstract execution 〈s0,Γ0〉
t1−→ 〈s1,Γ1〉 · · ·

tn−→ 〈sn,Γn〉, n ≥ 0, is valid if all the
Γi are satisfiable, for i = 1 · · ·n.

Note that the satisfiability of Γn implies, by construction, the satisfiability of Γ0, Γ1,
…, Γn−1.380
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3.5 Bisimulation

The key mathematical property in our case is that abstract and concrete executions are
bisimilar: any concrete execution can be simulated by an abstract execution and reciprocally
any abstract execution corresponds to at least one concrete execution.

The following two theorems capture this property.385

Theorem 1: Let M : 〈S, T, s0〉 be a stochastic discrete event system and let
σ = 〈s0, d0, ϕ0〉

t1−→ 〈s1, d1, ϕ1〉 · · ·
tn−→ 〈sn, dn, ϕn〉, n ≥ 0, be a timed execution of M .

Then, the abstract execution 〈s0,Γ0〉
t1−→ 〈s1,Γ1〉 · · ·

tn−→ 〈sn,Γn〉 built as described
above is valid.

Proof. By construction.390

Theorem 2: Let M : 〈S, T, s0〉 be a stochastic discrete event system and let
〈s0,Γ0〉

t1−→ 〈s1,Γ1〉 · · ·
tn−→ 〈sn,Γn〉, n ≥ 0, be a valid abstract execution of M .

Then, there exists at least one timed execution σ = 〈s0, d0, ϕ0〉
t1−→ 〈s1, d1, ϕ1〉 · · ·

tn−→
〈sn, dn, ϕn〉 of M .

Proof. If the abstract execution is valid, then by definition, Γn is satisfiable. Let σn be395

a solution of Γn, i.e. a valuation of each of variables that satisfies all constraints of Γn.
Using σn, we can then define concrete delays and firing dates. As concrete delays and firing
dates defined in this way verify by construction conditions 3-6, we obtain a valid concrete
execution.

The two above theorems have important practical consequences: it is possible to verify400

properties of infinitely many concrete executions by means of finitely many abstract
executions. Furthermore some applications will be discussed in Section 4. But before
entering into this discussion, we need to show that abstract executions can be implemented
efficiently.

3.6 Constraint Solving Algorithm405

LetM : 〈S, T, s0〉 be a stochastic discrete event system and let σ : 〈s0,Γ0〉
t1−→ 〈s1,Γ1〉 · · ·

tn−→ 〈sn,Γn〉, n ≥ 0, be an abstract execution of M . σ is constructed step by step, so we
can assume that the validity of all prefix executions of σ has been checked. It remains thus
to check the satisfiability of Γn, or more precisely to check that the constraints introduced
at step n are compatible with the constraints of Γn−1.410

A first remark here is that variables dj’s, j = 1 . . . n, are essentially renaming of
variables ϕj(ti), for some 0 ≤ i < j. We can thus eliminate them when building the Γi’s.
Actually, we introduced them in the above developments only for the sake of clarity of the
presentation.

We are thus left with three types of equations:415

• Equations of the form ϕi−1(t) < ϕi(t
′) or ϕi−1(t) ≤ ϕi(t′) describing chronology

constraints. We can normalize these equations respectively as, ϕi(t′) > ϕi−1(t) + 0
and ϕi(t′) ≥ ϕi−1(t) + 0.
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• Equations of the form ϕj(t) = ϕi(t
′) + d, j > i describing the abstract scheduling

of deterministic transitions. We can normalize these equations by introducing two420

inequalities: ϕj(t) ≤ ϕi(t′) + d and ϕj(t) ≥ ϕi(t′) + d.

• Equations of the form ϕj(t) > ϕi(t
′) + l, and ϕj(t) < ϕi(t

′) + h, j > i describing
the abstract scheduling of stochastic transitions.

Eventually, we end up with inequalities of the form:

• Yj < Xi + c or Yj ≤ Xi + c, j > i, and425

• Yj > Xi + c or Yj ≥ Xi + c, j > i.

The idea is thus to perform the Fourier-Motzkin elimination backward, i.e. starting from
the ϕn(t)’s:

• From Zk < Yj + d and Yj < Xi + c, one can deduces Zk < Xi + d+ c,

• From Zk ≤ Yj + d and Yj ≤ Xi + c, one can deduces Zk ≤ Xi + d+ c,430

• and so on

Three important remarks here.
First, the form of inequalities produced by the Fourier-Motzkin elimination is the same

as the form of the original inequalities. This makes it possible to optimize data structures
and operations on system of inequalities.435

Second, if the system contains two inequalities Yj < Xi + c and Yj < Xi + d, then
one is necessarily useless: the first one if c > d, the second otherwise. This applies indeed
for all pairs of inequalities going in the same direction, e.g. < and ≤, ≤ and ≤, etc. Again,
this makes it possible to optimize data structures and operations on system of inequalities.
In particular, AVL trees or similar structures can be used to store inequalities in order to be440

able to retrieve efficiently inequalities involving any two variables (in O(logm), where m
is the number of pairs of variables involved in inequalities of the system).

Third, the system is unsatisfiable if and only if, at some point of the Fourier-Motzkin
process, the system contains two inequalitiesYj < Xi + c andYj > Xi + d such that c ≤ d.
Indeed, this applies for all pairs of inequalities (strict or not), except in the case Yj ≤ Xi + c445

and Yj ≥ Xi + c.
This means that to check the satisfiability of Γn, given that Γn−1 is satisfiable, it suffices

to apply the Fourier-Motzkin elimination keeping only variables introduced at step n as left
members of inequalities.

In our implementation, we used a few other optimizations, but the description of which450

goes beyond the scope of this article.
As the result of the above developments, the greedy algorithm that checks whether a

given transition can be fired at step n is very efficient, i.e. of nearly constant complexity in
all practical cases we have dealt with.

4 Application to AltaRica 3.0 Models455

4.1 The AltaRica 3.0 Modeling Language

AltaRica 3.0 is an object-oriented modeling language dedicated to probabilistic risk and
safety analyses of complex technical systems [5]. It combines guarded transition systems
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[22, 28] with the structuring paradigm S2ML [24]. Guarded transition systems are a specific
implementation of stochastic discrete event systems, as we defined them in this article.460

S2ML, which stands for System Structure Modeling Language, gathers, in an unified way,
structuring constructs stemmed from object-oriented programming and prototype-oriented
programming.

Several assessment tools have been developed for AltaRica 3.0, including a stepwise
simulator, compilers to fault trees and Markov chains, and a stochastic simulator. These465

tools are provided with the freely available OpenAltaRica Platform1. The stepwise simulator
makes it possible to perform interactive simulations of AltaRica 3.0 models. It proves to
be of great interest for stakeholders to discuss the behaviors of the systems under study.
It is also very useful to debug and to validate models, as we shall see in this section. The
original version of the stepwise simulator did not take into account delays associated to470

transitions. As a consequence, it was possible to fire sequences of transitions that were
impossible according to the timed semantics.

The new version of this simulator, which implements the abstract semantics presented
in the previous sections, makes it fully compliant with the timed semantics of AltaRica 3.0.
Furthermore, results coming from both stochastic and stepwise simulators can be compared:475

any simulation played in the stepwise simulator could have been generated by the stochastic
simulator, and vice versa.

4.2 Illustrative example

As an illustration, we shall consider the simplified power-supply system of a farm of servers
pictured in Fig. 4.480

GRID   

CB

Busbar

CB1

Main supply

Backup supply 1

B1

CB2Backup supply 2

B2

Figure 4: A power supply system

The power is delivered to the busbar via three redundant channels. The main supply
channel consists of the grid G and a circuit breaker CB. The two backup supply channels
consist of a battery (actually a group of batteries) Bi, i = 1, 2, and a circuit breaker CBi,
i = 1, 2. All these components may fail.

In the initial state (and more generally when the main supply is working), CB is closed,485

while CB1 and CB2 are open. If the main supply is lost, the network is configured in order
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to use the first backup supply, i.e. CB1 is closed, while CB and CB2 are opened. If the first
backup supply is also lost, the network is configured in order to use the second backup
supply, i.e. CB2 is closed, while CB and CB1 are opened. Network reconfigurations are
assumed to be instantaneous, i.e. the corresponding transitions are associated with Dirac(0)490

delays.
The loss of the grid is assumed to be exponentially distributed, with a failure rate

λG = 5.0× 10−4 h−1. Moreover, it is assumed that it is recovered after at most 12 hours,
i.e. to be uniformly distributed between αG = 0h and βG = 12h. The guarded transition
system representing the behavior of the grid is pictured in Fig. 5a.495

The batteries are normally in the standby mode. They may fail in this mode. This
failure is assumed to be dormant, i.e. to remain unnoticed until the battery is actually used,
and exponentially distributed with a failure rate λB = 2.5× 10−5 h−1. In reality, periodic
tests make it possible to detect these failures. However, we shall not include maintenance
policies in the model presented here, in order not to overload it. When the battery is in500

use, it discharges. The time to a full discharge of the battery is assumed to be uniformly
distributed betweenαB = 8h and βB = 10h. The guarded transition system representing the
behavior of batteries is pictured in Fig. 5b. As for timeline, deterministic (here immediate)
transitions are represented with thin arrows, while stochastic transitions are represented
with thick ones. Transitions can be guarded not only by their source state, here encoded by505

the variable _state, but also by some other variables, here the Boolean variable active
that indicates whether the battery is currently required to provide power to the busbar.

Finally, the circuit breakers may be either free to open and to close, or stuck in one of
these positions. This failure is again assumed to be dormant and exponentially distributed,
with a failure rate λCB = 1.0× 10−6 h−1. As we do not take into account maintenance510

policies here, circuit breakers are assumed to be non repairable. The guarded transition
system representing the behavior of circuit breakers is pictured in Fig. 5c.

Table 3 summarizes the probability distributions associated with failures and repairs.

Table 3 Reliability parameters of the power supply system

Component Transition Distribution Parameters
Grid Failure Exponential Failure rate λG = 5.0× 10−4 h−1

Repair Uniform Lower bound αG = 0h,
upper bound βG = 12h

Batteries Dormant failure Exponential Failure rate λB = 2.5× 10−5 h−1

Discharge Uniform Lower bound αB = 8h,
upper bound βB = 10h

Circuit breakers Dormant failure Exponential Failure rate λCB = 1.0× 10−6 h−1

4.3 AltaRica Model

The first step in designing an AltaRica model consists usually in designing classes that515

encode the behaviors of the components of the system under study. Alternatively, these
classes can be picked-up in libraries of on-the-shelf reusable modeling components.

To describe (from scratch) our example, we have thus to design classes for the grid, the
batteries and the circuit breakers. These classes are direct encoding of the guarded transition
systems pictured in Figure 5.520
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_state==WORKING _state==FAILED

repair

failure

(a) Grid

_state==STANDBY _state==WORKING

_state==DISCHARGED

active ? start

not active ? stop

dischargedormantFailure

(b) Battery

_state==FREE

_mode=CLOSED

_state==STUCK

_mode=CLOSED

dormantFailure

_state==FREE

_mode=OPEN

_state==STUCK

_mode=OPEN

not active ? open active ? close

dormantFailure

(c) Circuit Breaker

Figure 5: State automata representing components of the power supply system.

For instance, Figure 6 shows the code for the guarded transition system pictured
in Figure 5b that represents the behavior of batteries. This class involves one state
variable, _state, and two Boolean flow variables, active and outPower. The
variable outPower represents whether the battery actually provides power. The class
Battery involves also four transitions, labelled respectively by events start, stop,525

dormantFailure and discharge. Probability distributions associated with these
events are declared with parameters, to be able to change easily their values when the class
is instantiated. In AltaRica 3.0, the values of state variables are modified via transitions,
while the values of flow variables, that depend functionally on the former, are modified via
assertions. The assertions are executed after each transition firing, in order to update the530

values of flow variables. In the code given in Figure 6, the assertion defines the value of
outPower. The value of active is set up outside the component.

Once the behaviors of basic components described by means of classes, it is possible to
describe the system under study as a whole, in a top-down way. AltaRica 3.0 provides the
notion of block—prototypes in the sense of object-oriented theory—to do so. The different535

components of the system are then connected via assertions (or synchronizations). The
reader interested in more details can refer to authors’ article presenting AltaRica 3.0 [5].

Figure 7 shows the code for the power supply system.
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1 domain BatteryState {STANDBY, WORKING, DISCHARGED}
2

3 class Battery
4 BatteryState _state (init = STANDBY);
5 Boolean active (reset = false);
6 Boolean outPower (reset = false);
7 event start (delay = Dirac(0));
8 event stop (delay = Dirac(0));
9 event dormantFailure (delay = exponential(lambda));

10 event discharge (delay = uniform(alpha, beta));
11 parameter Real lambda = 2.5e-5;
12 parameter Real alpha = 8.0;
13 parameter Real beta = 10.0;
14 transition
15 start: active and _state == STANDBY -> _state := WORKING;
16 stop: not active and _state == WORKING -> _state := STANDBY;
17 dormantFailure: _state == STANDBY -> _state := DISCHARGED;
18 discharge: _state == WORKING -> _state := DISCHARGED;
19 assertion
20 outPower := _state == WORKING;
21 end

Figure 6: AltaRica 3.0 code for the class representing batteries

1 block PowerSupplySystem
2 block MainSupply
3 Grid G;
4 CircuitBreaker CB;
5 Boolean outPower(reset = false);
6 assertion
7 CB.inPower := G.outPower;
8 outPower := CB.outPower;
9 end

10 block BackupSupply1
11 Battery B;
12 CircuitBreaker CB;
13 Boolean isWorking(reset = false);
14 Boolean active(reset = false);
15 Boolean outPower(reset = false);
16 assertion
17 isWorking := B._state==WORKING and CB._state==FREE;
18 B.active := active;
19 CB.active := active;
20 CB.inPower := G.outPower;
21 outPower := CB.outPower;
22 end
23 clones BackupSupply1 as BackupSupply2;
24 Boolean outPower(reset = false);
25 assertion
26 BackupSupply1.active := not MainSupply.outPower and BackupSupply1.isWorking;
27 BackupSupply2.active := not MainSupply.outPower and not BackupSupply1.isWorking;
28 outPower := MainSupply.outPower or BackupSupply1.outPower
29 or BackupSupply2.outPower;
30 end

Figure 7: AltaRica 3.0 code for the power supply system

Models such as the one presented above are usually assessed by means of Monte-Carlo
simulations: their highly dynamic nature prevents to assess them via the compilation into540

combinatorial models such as fault trees. Moreover, it is not possible to compile them into
Markov chains, as they mix deterministic and stochastic transitions, the latter not always
obeying Markovian hypotheses.
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4.4 A Tricky Scenario

As just pointed out, the AltaRica 3.0 model presented in the previous section makes possible545

a fine grain analysis of the safety and the availability of the power supply system. In the
actual model, maintenance policies are also taken into account, making the analysis even
more accurate.

The expressive power of AltaRica 3.0 comes, however, with a price (when used fully):
models must be carefully checked, so to verify that they actually encode the expected550

behavior of the system under study. The stepwise simulator plays a very important role to
do so. We shall now illustrate our point by unwinding a tricky scenario.

In the initial state, six stochastic transitions are enabled (all exponentially distributed):

• MainSupply.G.failure, MainSupply.CB.dormantFailure,

• BackupSupply1.B.dormantFailure, BackupSupply1.CB.dormantFailure,555

• BackupSupply2.B.dormantFailure, BackupSupply2.CB.dormantFailure.

In the full model, a few additional deterministic transitions representing periodic
maintenance operations come in addition of the above ones.

If MainSupply.G.failure is fired, then the whole network needs to be
reconfigured. The guards of the other failure transitions remain satisfied, but these transitions560

cannot be fired because of the three immediate reconfiguration transitions that are newly
enabled:

• MainSupply.CB.Open,

• BackupSupply1.B.start, BackupSupply1.CB.close.

These immediate transitions must thus be fired prior to the firing of any other transition.565

In the previous version of the stepwise simulator (that did not take into account the timed
semantics), it was however possible for the analyst to fire both failure and reconfiguration
transitions, making the debugging task tedious, to say the least.

After the firing of these immediate transitions, the busbar is powered by the first backup
train. The following transitions are enabled:570

• MainSupply.G.repair, MainSupply.CB.dormantFailure,

• BackupSupply1.B.discharge, BackupSupply1.CB.dormantFailure,

• BackupSupply2.B.dormantFailure, BackupSupply2.CB.dormantFailure.

If the transition BackupSupply1.B.discharge is fired, then three immediate
reconfiguration transitions become enabled:575

• BackupSupply1.CB.open,

• BackupSupply2.B.start, BackupSupply2.CB2.close.

As previously, these immediate transitions must be fired prior to the firing of any other
transition. After the firing of these immediate transitions, the busbar is powered by the
second backup train.580

Now, five transitions have their guards satisfied:

• MainSupply.G.repair, MainSupply.CB.dormantFailure,
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• BackupSupply1.CB.dormantFailure,

• BackupSupply2.B.discharge, BackupSupply2.CB.dormantFailure.

However, the transition BackupSupply2.B.discharge is not enabled. The reason is585

that the battery of the second backup supply has been activated after the discharge of the
battery of the first backup supply. According to our reliability parameters, discharging both
batteries takes at least 8 + 8 = 16 hours. But the transition MainSupply.G.repair,
which has been scheduled at the same date as the activation of the battery of the first supply,
cannot take more than 12 hours. It follows that MainSupply.G.repair must be fired590

before BackupSupply2.B.discharge.
Table 4 gives a possible concrete execution corresponding to our scenario.

Table 4 A possible concrete execution of the power supply system

Step Transition Firing Date
1 MainSupply.G.failure 0 + 1234.5 = 1234.5

2 MainSupply.CB.Open 1234.5 + 0 = 1234.5

3 BackupSupply1.B.start 1234.5 + 0 = 1234.5

4 BackupSupply1.CB.close 1234.5 + 0 = 1234.5

5 BackupSupply1.B.discharge 1234.5 + 9.2 = 1243.7

6 BackupSupply1.CB.open 1243.7 + 0 = 1243.7

7 BackupSupply2.B.start 1234.5 + 0 = 1234.5

8 BackupSupply2.CB.close 1243.7 + 0 = 1243.7

9 MainSupply.G.repair 1234.5 + 11.6 = 1246.1

Figure 8 shows a timeline representing this execution (for the sake of simplicity, we did
not represent dormant failures of circuit breakers).

d0 d1 d2 d3 d5
B1.start

d4

CB1.close

B1.discharge

d6 d7
B2.start

d8 d9

CB2.close

d10

B2.discharge

CB1.open

G.repair

G.failure CB.open

Figure 8: Timeline of the execution of the power supply system.

Note that in case the transition BackupSupply1.CB.dormantFailure is fired595

before MainSupply.G.failure, the scenario changes completely. Now, the first
backup supply cannot be activated. Consequently, the second one is. Moreover, the discharge
of its battery can occur before the grid is repaired.

On a small example, like the one presented here, it is still possible to do some book-
keeping of delays by hand. But when the model gets large, this is clearly impossible. This is600

the reason why, the introduction of the abstract semantics is of tremendous practical interest.
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5 Conclusion

In this article, we introduced the notion of abstract execution of stochastic discrete
event systems—taking a very general definition of the latter—that consists in abstracting
(stochastic) delays associated with transitions into systems of linear inequalities. We showed605

that abstract and concrete executions are bisimilar: any concrete execution can be simulated
by an abstract execution and reciprocally any abstract execution corresponds to at least
one concrete execution. We introduced also the concept of timeline which proves to be
very useful to reason on timed executions. Finally, we showed how to solve efficiently the
generated systems of linear inequalities.610

We illustrated the proposed approach via its implementation in the stepwise simulator of
AltaRica 3.0. This latter tool makes it possible to debug and to validate complex behavioral
models. The notion of abstract execution reconciles stochastic and stepwise simulations of
AltaRica 3.0 models. We showed its practical interest by looking at tricky scenarios of an
industrial case study mixing stochastic and deterministic transitions.615

The introduction of abstract executions, already interesting on its own, paves the way to
the design of efficient model-checking algorithms. In particular, we designed the prototype
of a generator of full fledged sequences of events leading to a failure state, based on this
abstract semantics. We plan to enhance this prototype, which is already available within the
OpenAltaRica Platform, with model-checking functionalities.620
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